from pathlib import Path
from PIL import Image
Running a Local Vision Language Model with LM Studio to sort out my screenshot mess
tl;dr I used a VLM to sort out my screenshot mess using a local VLM.
There are many reasons you might prefer to run a local model, including privacy, speed, cost, or just plain old curiosity.
Running Local Language Models has become increasingly easy over the last year. This is in a huge part thanks to the work of George Gersonov on llama.cpp
. llama.cpp
is used under the hood by a growing number of UI tools like LM Studio.
Recently LM Studio has added additonal support for running models on Macs with Apple Silicon via mlx-engine which uses Apple’s MLX library to accelerate the inference of models on Macs with Apple Silicon. The most recent release of LM Studio has also added two very exciting features:
- Headless mode, which allows you to run models without a GUI. This is great for background processing tasks.
- Support for Vision Language Models (via mlx-vlm). Vision Language Models (VLMs) are a type of model that can process both text and images.
In addition to these two features, LM Studio already had support for Structued Outputs (using Outlines). In this blog post I’ll show how these new features can be used for a perfect local VLM task: sorting out my chaotic desktop 😅.
The Problem
I have hundreds of screenshots on my desktop. Some of them are screenshots of code, some are screenshots of webpages, some are screenshots of videos, some are screenshots of stupid memes, etc.
I’d like to be able to automatically sort these screenshots in a way that I can find them later or at least shove them into some kind of order so that my desktop doesn’t look like a screenshot graveyard.
Let’s see how we can use VLM’s and LM Studio to tackle this problem!
What we’re working with
To start with lets see what we’re working with.
= list(Path("/Users/davanstrien/Desktop").glob("Screenshot*.png"))
screenshots 3] screenshots[
PosixPath('/Users/davanstrien/Desktop/Screenshot 2024-10-03 at 09.14.30.png')
Setting up a local VLM
If you haven’t already, you will need to install LM Studio. You can find the latest instructions on their website. If you already have LM Studio installed make sure you are running at least version 0.3.5.
Enabling LM Studio Headless Mode
Whilst not necessary for running a VLM, Label Studio added a new feature for running in headless mode in version 0.3.5. This allows you to run the VLM without a GUI. This can be very nice if you want to use a VLM or an LLM in the background for some task(s).
To enable headless mode, go to the settings menu and check the “Enable Local LLM Service” option.
In addition to this, we’ll use the CLI to interact with Label Studio. Check out the docs for more information on how to set this up.
Let’s see what the lms
CLI has available.
!lms
__ __ ___ ______ ___ _______ ____
/ / / |/ / / __/ /___ _____/ (_)__ / ___/ / / _/
/ /__/ /|_/ / _\ \/ __/ // / _ / / _ \ / /__/ /___/ /
/____/_/ /_/ /___/\__/\_,_/\_,_/_/\___/ \___/____/___/
lms - LM Studio CLI - v0.0.27
GitHub: https://github.com/lmstudio-ai/lmstudio-cli
Usage
lms <subcommand>
where <subcommand> can be one of:
- status - Prints the status of LM Studio
- server - Commands for managing the local server
- ls - List all downloaded models
- ps - List all loaded models
- get - Searching and downloading a model from online.
- load - Load a model
- unload - Unload a model
- create - Create a new project with scaffolding
- log - Log operations. Currently only supports streaming logs from LM Studio via `lms log stream`
- import - Import a model file into LM Studio
- version - Prints the version of the CLI
- bootstrap - Bootstrap the CLI
For more help, try running `lms <subcommand> --help`
As you can see we have a bunch of commands for interacting with the local LLM service. We’ll start by downloading a VLM model. For now LM Studio has support for Pixtral (specifcally using a MLX 4 bit quantised model mlx-community/pixtral-12b-4bit).
LM studio allows us to directly download models from Hugging Face. Let’s download the Pixtral model!
%%bash
-community/pixtral-12b-4bit lms get mlx
Searching for models with the term mlx-community/pixtral-12b-4bit
Based on your hardware, choosing the recommended option: Pixtral 12B [4bit] (7.15 GB)
Downloading Pixtral 12B [4bit] (7.15 GB)
You already have this model. You can load it with:
lms load pixtral-12b
You’ll see above I already have the model downloaded but if you don’t the CLI will download it for you.
Once the model is downloaded we can load it into LM Studio.
%%bash
-12b lms load pixtral
Loading model "mlx-community/pixtral-12b-4bit"...
[LMStudioClient][LLM] Start loading model mlx-community/pixtral-12b-4bit...
Model loaded successfully in 9.62s. (7.15 GB)
To use the model in the API/SDK, use the identifier "pixtral-12b".
To set a custom identifier, use the --identifier <identifier> option.
⠴ [████████████████████████████████▏ ] 64.16%
We’ll also want to start a server so we can interact with the model via an API.
%%bash
lms server start
Starting server...
Success! Server is now running on port 1234
The server will be available at http://localhost:1234
. The API is largely compatible with the OpenAI API so if you’ve used that before you’ll feel right at home. We can start by checking what models are available.
%%bash
//localhost:1234/v1/models curl http:
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 142 100 142 0 0 59638 0 --:--:-- --:--:-- --:--:-- 71000
{
"data": [
{
"id": "pixtral-12b",
"object": "model",
"owned_by": "organization_owner"
}
],
"object": "list"
}
Using the OpenAI Client to interact with the VLM
We can use the OpenAI client to interact with the VLM. This is useful if you want to use a VLM in a script or other program. Using this Client will also make it easier for us to switch out the VLM in the future without having to change the API calls. Let’s start by seeing how we can create the client.
The import is exactly the same as for the OpenAI API.
from openai import OpenAI
We need to point to our local server and use the API key lm-studio
. The server will usually be available on port 1234
.
= OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio") client
We can now see what models are available via Python.
list() client.models.
SyncPage[Model](data=[Model(id='pixtral-12b', created=None, object='model', owned_by='organization_owner')], object='list')
= client.chat.completions.create(
completion ="pixtral-12b",
model=[
messages"role": "system", "content": "Always respond with a pointless anecdote."},
{"role": "user", "content": "Hello, how are you?"},
{
],=0.7,
temperature )
from rich import print
print(completion.choices[0].message.content)
Oh, hey there! You know, I was just thinking about the time I tried to make a sandwich with a banana instead of
bread? It was a slippery slope, literally and metaphorically. I ended up with a mess of banana goo and a serious
case of the giggles. Who knew making a sandwich could be so... slippery!
Very nice! Now let’s try with an image.
Passing Images to the VLM
Let’s try with an image. We need to encode the image to base64 to send it to the VLM via the API.
# encode the image to base64
import base64
import io
= Image.open(screenshots[-3])
image # Convert PIL Image to RGB mode
= image.convert("RGB")
image_rgb
# Convert PIL Image to bytes
= io.BytesIO()
img_byte_arr format="JPEG")
image_rgb.save(img_byte_arr, = img_byte_arr.getvalue()
image_bytes
# Encode to base64
= base64.b64encode(image_bytes).decode("utf-8") base64_image
We can see the base64 encoded image below.
base64_image
'/9j/4AAQSkZJRgABAQAAAQABAAD/4QHgaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjE1NDQ8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+OTU2PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cv/bAEMACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwoNyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIBggDvAMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APeo/wDXSfQf1qWoo/8AXSfQf1qWgAooooAKKjuLiG0tpbm5mjhgiUvJLIwVUUDJJJ4AA7021u7a+tY7q0uIri3lXdHLE4dHHqCOCKAJqKZNNFbxNLPKkUa/ed2CgfUmn0AFFFFABRQSACScAVn3OuaZZ/YfPvYVF/MILUg7hK5BIAI+hoA0KKKz9T17R9FMQ1XVbKxMpxH9puFj3/TcRmgDQopEdZEV0YMrDIYHII9aWgAoqlZatY6jc3tvaXAllspfJuFAI8t8A45HPBHSrtABRTFmieWSJJUaSPG9AwJXPTI7Zp9ABRWdqfiDRtFaNdV1ewsGlBMYurlIi4HXG4jPUVYsNRsdVtFu9OvLe8tmJCzW8qyISODgqSKALNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQr/AK+T6j+QqaoV/wBfJ9R/IVNQAUUUUAFFFFABRRRQBFH/AK6T6D+tS1FH/rpPoP61LQAUUUUAcB8Wr2X/AIRq10K2gmubnWbyO28i3I8xogd8u3JA+6uOv8VcRpviS+0HQV0dftGkf2V4pt0lhlKhorCdjIquQSMYJHBxgCvbprCzuLy3vJrSCS6tt3kTPGC8W4Ybax5XI4OOtV7rQtIvWuWutLsp2ukVLhpbdWMqr90MSPmA7Z6UAeL+ONWufEPhH4iGHV5p7LT9QtRbrbyK0ZT5A6EgHKgktweqjnGQdfXdTuotfOif8Jvd2GnWWjNfW1800RkvZt7cs+3DKuMbQATivUYNC0i1tp7a30qxignULNFHboqyADaAwAwQAMc9uKgk8KeHZbK2spNC0x7W1JNvC1ohSIk5JUEYGTycUAeXwaz4k8V3uhwSa3e6Sbrwy9/OLQKpeVZMK3IO0Hg8Y444zSeGPEWvW994J1HU/EF5eQa9ZXjXkLomyLyIt6siquc8c9cn8q9fbTrFrsXbWdubkRGATGJd4jJyU3Yztz26VFFoulQfY/K0yzj+whltNkCj7OGGGCcfLkcHGM0AeK6L4i1bVda+xQ65rE1jrGkXM0f2m6gedXTlZFSNcRZwQFOc5PpVvwtdz6Z4M+Hosdaubhb7VIo7iN5EYRL5b5iXAGFyOhyfevWbHw1oWmXAuLDRdOtZ1LESQWqIwLY3YIGecDP0FFv4a0K0YNb6Lp0TCf7SClqgxLjG8YHDYJ5680AcN4F1S48Qa1c6pqniqeK9j1C4tV0JZY0jVF3BVKEbmbA3ZB7fWqXxEtrW28WT6/aaj4fub+00zyrvR9Y2kSQbmbKE8qx5HpyM9efShoOjjVv7WGlWP9pdPtf2dfN6Y+/jPTjrTdS8PaLrM0c2p6RYXssX+re5tkkK/QsDigDy628RnxLrtnZtrs3hHR4tFt720t4JIoS5Yc/M64KIBjGBkDNVvGXjC+sfFc1zpOsakU0/Uba2ngmuIY7dg23dGkW3fJkEkscY5x0r1vUNA0bV/J/tLSbG88j/AFX2i3STy/8AdyOKjuPDOgXd495c6Jps104VWmktUZyFIK5JGeCBj6D0oA8i1fX9Q0BfG0mmymGabxHbwTTKyq0ETxrlwW4XOMBjwM11vhTU/FlnpN8JLCbW1S7C2wfUrd5kiKAkSSKQpIOMd8MK7d9F0qSW8lk02zeS9VUumaBSZ1HQPx8wHvTtN0jTdGtjbaXYWtlAW3GO2iWNSfXAHWgDx9Jr7RPHHxH1aLUb3+0LSzhurexllRlmLW7thlC5dYiSBtI4HOetXfCviLVbfxFp1rZ6/N4pXUNGa+uLd5Y8wzDGArAAICSV2t0716lJo+mTapFqcmn2r6hEpSO6aFTKgIwQGxkDBI/E03TtD0nR3mfTNLsrJpjmU20Cxlz77QM0AefePNfNxo9hpN5pVlp/iHVpGt7cXskUwtIf45y/QYHQZyT64rF1y6l0O+8P+EPC19JBo66dJLHPY3kELXE4fBzI+VOPvFRyd35er6l4c0PWZkm1TRtOvpUXaj3VqkrKOuAWBwKjk8K+HZdOj06TQdMaxjYvHbG0j8tGPUhcYBNAHnltP4o1zxT4e0a+164sPO0H7XenT3jPnOsoAZXAIG7KnK9sgdayIPF2tNeWusf8JHI2pTeIv7Nk8P5TYsG8rjZjcGAwd+cV7NDpenW9xFcQ2FrHNDD9nikSFQyRZzsBAyFyBwOKiGhaQurHVhpdkNSIwbsQL5uMY+/jPTjrQBoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/wCuk+g/rUtABRRRQBVvtRs9MgE97cJBEW2Bm7nrj9DS2N/a6lb+fZzrNFuK7l6ZrD8aSeVaaXJ9pS226jGfOdchPlfkiq89y2pXGh2sWtPOkssyTz2T+Vv2oWA4Jx2p2EdbVexvrfUrNLu1cvC+drEEZwSDwfcGuLjv3C2Ftqmq3VvYq91GbhZijyOj4UO45+7n6kVT0y5gj03Q4bzVLmys3trlmaKcx7mEvGSO/X+XfFPlC56RUH2yD7d9i3/6R5Xm7Np+7nGc9OtcJHqNzJbaaNa1O9sbZrB5EmRzG0sgcgZI6nZtOO+aS91XV1sWee4nhuP7FSVgrFcP5oG7HZiKOULnoEs0cETSzSJHGoyzuwAA9yafXBa7azwWevaeLy9uIo7WG4XzZizA7mDfgQMkdOKlkv4INctDbaxJfWpeKJIY75vMUljliORKpzznkdO1KwXO4orkPFV8bPVIZDfv5SRDdZQ3DQysS+A6Y4c9tp9PekttQi/tnUG1LUbuO8hunWCySQqHiC/JhOjZHOfXH4lgudVd3UNjaS3VwxWGJS7kDOAPapVYMoYdCMivM49Smu7TVIUupJreXSHnMb3TXDIwI+8SAFbB5UcCr95f3suuSJHqcVsFW3az827aOORCASQoUiTJyOvH4U+ULnbXV5BZLE07lRLKsKcE5ZjgCpWmjWVImkQSOCUQsMsB1wO+MiuAurpLjVUF1qE5v01uNFtDIQixBxtITpjGDu9629ejgTxVotxPcyQoUmUHzjGm4bSo9OeQfXAHalYLnT1VuNSsbW5it7i7giml/wBXG7gM30FcdoOoXEup6ZjUbue+maUajaysdsQAP8PRMNgDHWneIGiivPEUF0Mz3lvAtkh5aQjIwn0fBx+NFgudzRXPa6s8+q6JZC8uIEneUTG3kKFtqbsZHuKxbG6v38StHJqKxTRXxj+zz3bgvCAQAsW3ByuCGzyevWiwXO6dgiM7HAUZNVLXVbO8aBIJSzTwfaIwVIymQM9Pccda4jQr6S5bSRBql5eXM8M322F5jIqKFO0kfwnO3Hrn3qWz1C9j061GnSs7JoLOkanI8xXUZx0LDn+VOwXO+orh5dR02HR4zZ6xe3ZmlhSR5L5kEZIbl3wSgODkD0FZ51ed9Dt5JdWyLeW4BQXbxPcopG0rJjJYZ4B60rBc9Iormdf1FE03TMvcW4uSCHe5NuE+QnEjgE59h1IrL02e81aDw3FPqF0omS685oZSjSbGAXJHPbr16+tFgud1RXDeGrzULrV4HutRQTl5lurSS6YvxnAERXCYIHIPTNGty3gu/EdzHqF5EbBYHgjjmIQEqCcr3zjp7miwXO5pkc0cpcRyI5Rtj7WB2t1wfQ8iuG1rULmLUNSP9oXcOpQzRLYWcbHZKhxzt6Pk7s+mK1PDEUNvq+tQtcym6F25EEk5J8shCH2k++N34UWC50NreQXqytA5YRStC/BGGU4IqumtWEkkUaTEtL5u35GGfL4ft2zXGW1wsOquLTULn7e+tyKbRJTsMW87iU6Yxk7vb2q1bTyz6hpbTSvJIzajGpdsk4YYA/AdPanYLnZWl1Fe2kV1A26KVA6EjGQelNvbyDT7OW7uXKQxDc7AE4H0Feem+uTY6VAmoLaW39lgxSm7aBDKCQ2SqncRgfKf60/xFdtLb6tDqepSJcpbw/ZoIpSsUoKgswHG/wCbd1HAFHKFz0V3WONnchVUEknsKyofFGiXEyxQ6jC8jdFGcmtCG8t7i5uLeKUNLblRKoH3SRkfpWFZ/wDIx+J/9yD/ANFmkM3rS6ivbSK6gbdFKgdCRjIPSpq8/sWvtL07Smsbm6mlu9LmYQyOXUOiKybF6A8496TTpdSudPuLiy1YTyRW8dwIRevNJ5itkhgVG0MNwK+uKdhXPQaKwNEu5tQ0+/1UySeVcyObZCxwkajaCB2JIJP1rE060url9FSTWNT239k8s2Lk53KFxg9vvduuOc85Vgud1RXm17rlxJotk7Xs8N2NO84Sm7aNXYMQMKAfMc45B4rWkvNRbUYdNE0wGqPDcxyK7AxRhczKG7fdGB/t0WC52DTRrKkTSIJHBKIWGWA64HfGRSXE8drbS3ErbY4kLucZwAMmub8QLbw+KNGubm4mhj8uZfllKAsNpVeuMtyMd8AVz9pqktyL5Eu5JLefSp5DFJdmdkYdC2QArYP3RRYLnokE0dzbxTxHdHKgdDjGQRkVJXmqalqcGkFJppoJ/KttqpKVRLMgAupAOGzwzYJGeK6bR5pRoGou+qRSRqzmK4jna58kbAcFioLYPP44oaC50lFeeRancJpUkIvrhkjureO8vobppk8pgdzIx5Q5AyO2asLc3Nwkdtb6lePp76skEN0JTvdDGxdd3UgN0P8AhRYLnd0VwdrJeWs0E39pXsuzWmsAksxZTFluo7n3PNP0K81C51yJrnUES58+Vbi0ku2yVwcBYtmBjAIYHnnnnALBc7OW7t4FmMkqjyY/NkAOSq884HPY/lT4ZkuII5om3RyKHU4xkEZFcfqQjtPEWtSteTw3Dad5lsvnlQ5CyZwM84xkDscms+ee+msNRuxqd7HJZ2FpNEEmIUuyZYsO+cfqadgueh0VxOoy6hpMWuW1pe3k/lwW8qvLIXeMMxEhBwccDPA46itPw0Zbm2vkbUY7m2cgRmG8ed4sr8w3kA+hHpzSsFzoIporiISwyJJG3R0YEH8RT6810y4jttJ0i2k1O5trZppVv2S4IMLjOxSf+WYPPpmugtLu6l8E3UsmovBzIlvfTA7jHuwjtxkZHf8AGiwXOqorgY9UZ7W1ilvLmCw+2vFd3cd40oyEBULL1CE/l61Hr+rJDCF07U7nMNqJIp5L1gJfnb7qgfvDwQSeMD8afKFzu4byCe6ubaNyZbYqsowRgsAw+vBp9xPHa20txK22OJC7nGcADJrhdVvrmC61l7eQxB7u0+0OrlCkRiGTuAJUZAGQK1LVpm8G6v5t7FdqEn8t45zNtXZnaXIBYg5/DFKwXOmgnjubeKeI7o5UDocYyCMipK8903UEtbdDZX19eQppLPdosxbyHAG3ZnhW+8MdgM44qODV71bXVEivpXt1Fs7SRXLXDW8bMRIVcjk4644HOOlPlC53017bwXltaSORNc7vKXB52jJ57cVYrgNUmf7VpZ8O3j6hODdBHmmMu1vLXIBPXA5A9TWxe3yp4GivbG6uWRfJYzO5MmBIu/cfX7wP4jpSsFzp6K4O/wBaNwdamt9TmWzS6tFSaKQgIpwH2+3X2PvWx4ZuGlvNWjt7ua80+ORBbzTSGTLbfnUOeoBx+dFgudJRXAaTqNzJdWJXUrye/lE/9oW0jHbCAD/D/BhsAYxmpbOfUbO30qeC8u7q4vtNnkMc8hkBkVFZNo7HJx70WC53VIzBVLMQFAySTwBXn0upKmgQS2OsXU9xK0P2/wAy5b9wpJ3HgHy/mwOBwK27COe68KalE18t3kyiF7e5aUgbQQvmEAsc5/DFFgubx1C1FxawCUM90jPCV5DqoBJBHHQirNcBp9tbX3/CMQQahcEfZpvNeK5O9HCRZTPVQPQYqD+1NRudP0hbq/aCCS3l/wBIe7a3Dyq5UbnCtyFGcHAJ/KnYLno1FcPcXOqwvb2P2ySWTWIIBFcQuSsbLgSsvQgFPm7c5q74vuzaSW7/ANoGJI4nd7ZbpoHlHABVh95h/dPWlYLnUJLHIzqkis0Z2uAclTgHB9OCD+NPrgBc29h/brvc3y3LzoRCbsxssbiPDEnO3k7S2MgcUlreXl3ZxWo1KbYdZEAmguGYmIxElQ5wWHoT9fSnYLnerNE8rxJIjSR43oGBK56ZHan1yejW1vZeM9Vhe7n80rCYUmuGJlXZycE/NjHXnFUryTUBYeIdQhvbwy2920EaLK2yOP5NxCjPIDHnHGMilYLnc0VwC3txHboJNYzpUl2glntrx5pIQUJ2tIVBALbee2SKTVb1/tUFvaaw6WBtHa3upr54w8gdgSXCneRgYU9vrT5QudzFeQTXU9tG+Zrfb5i7SNu4ZHPQ8elEt5BDdQW0j4mn3eWu0ndtGTz0HHrXHTX2ow3uoXj3cjrYPZyzRxMSjRtHiXaPTnd07U03uoBNNuXurhDfJe3Pl+YcKvl5jA9gMEe5NKwXO6orhraa9sba2mTUbuV7vRpLhvPkMgSQKrBlHb73T+dWPBszXd1JcPfySf6NGBbyah57bv43KhjtGcdeevTpRYLnY0Vwd1NqEem6lfpfXZI1OS2fM7BYIBJyRgHB7bsEgHigXk8dvaJc6wP7LkvnWS5t7xpGjHlgrGZSoON2efQ4zRYLneUVwWm6u0Ethcy6lM2mrqF1E080pIZNn7vcT19s1HLqd5Lpmks17JHazz3XmTyXLwZIc7FaQKSoxnA9vanyhc9Bpkc0cwYxSI4VijbWBww6g+4rg/7QuLefTnutWF4QkKNDa3bo7Evw4GAJQRjOfeoozFaWl9BFrLW9yuqSB4ri8ePegLEDd1QsOd3cijlC56JRXLy6on/CDQ3uL1FkVFy0+2QZcDLSY4H+1joawhq90mkMr30ksCasIi8V4QWjMe7aJmwcZ7nGfWlYLnotQrdwPeSWivmeNFdl2ngHODnp2Neez3slto1tC2qzNdNDNMbj+02Me7cAqBlzvcDHyjA6nnNWrzVb99IvLgXcySHTbGUFHI2u7fMR6Zp8oXO+ormdPuk0bU9YgvL+d7OAW7I9zIZCpfIPPXkgV01SMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIV/wBfJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/AF0n0H9alqKP/XSfQf1qWgAooooAKKa7rGu5jgVH9o/6ZS/980ATEA9RmqslhDLqUV8xbzYomiVcjbhiCc+/yipPtH/TGX/vmj7R/wBMZf8AvmgCYgHqKKh+0f8ATGX/AL5o+0f9MZf++aAJqQKoxhQMcDjpUX2j/pjL/wB80faP+mMv/fNAEpAJBIHHSlwM5xz61D9o/wCmMv8A3zR9o/6Yy/8AfNAE2ABjFJtHHA46cdKi+0f9MZf++aPtH/TGX/vmgCXAznHPrQQD1APeovtH/TGX/vmj7R/0xl/75oAmwM5xyaMAkHHSoftH/TGX/vmj7R/0xl/75oAmpMDOcc+tRfaP+mMv/fNH2j/pjL/3zQBFpunw6Xp8NlAWMcS7VZyCxHvirQAAwBiovtH/AExl/wC+aPtH/TGX/vmgCXaMEYGD1oIB6gGovtH/AExl/wC+aPtH/TGX/vmgCYgHqKKh+0f9MZf++aPtH/TGX/vmgCXAznHPrS1D9o/6Yy/980faP+mMv/fNAE2BnOOaTAznAz0zUX2j/pjL/wB80faP+mMv/fNAE2BnOOfWggHGR06VD9o/6Yy/980faP8ApjL/AN80AS7VxjAxnPSjAznHI71F9o/6Yy/980faP+mMv/fNAE2KKh+0f9MZf++aPtH/AExl/wC+aAJqrX1kL60kt/PmtxJ954GCtj6kGn/aP+mMv/fNH2j/AKYy/wDfNAC21vFaWsVtAgSKJAiKOwAwKlqH7R/0xl/75o+0f9MZf++aAJsDOcdKoxaXEmqyai8s0szJ5aCRgViXqQoA4zgZzk8VY+0f9MZf++aPtH/TGX/vmgCUgHqAe9KAB0FQ/aP+mMv/AHzR9o/6Yy/980ATUgAAwBgegqL7R/0xl/75o+0f9MZf++aAJQABgAAUoAAwOBUP2j/pjL/3zR9o/wCmMv8A3zQBNSYGc459ai+0f9MZf++aPtH/AExl/wC+aAJcAkHAyOhpah+0f9MZf++aPtH/AExl/wC+aAJqQAAYAwKi+0f9MZf++aPtH/TGX/vmgCXaOeBz1460tQ/aP+mMv/fNH2j/AKYy/wDfNAEu0bduBt6YxS4GQcdKh+0f9MZf++aPtH/TGX/vmgCXAznHPrSgADAGAO1Q/aP+mMv/AHzR9o/6Yy/980ATAAZwOtAAAwBgVD9o/wCmMv8A3zR9o/6Yy/8AfNAEoAAwBgUtQ/aP+mMv/fNH2j/pjL/3zQBHfWEWoQJDKWVUlSUbCByrBh+HFWgABgDAqH7R/wBMZf8Avmj7R/0xl/75oAmwM5xyaKh+0f8ATGX/AL5o+0f9MZf++aAJcAZwOvWlAAGAMAdqh+0f9MZf++aPtH/TGX/vmgCUADoAO9BAIwRke9RfaP8ApjL/AN80faP+mMv/AHzQBXOlQtq41KSWaSVEKxI7DZFkAEqMdTjknNXSAcZAOKi+0f8ATGX/AL5o+0f9MZf++aAJSoJyQM4xS1D9o/6Yy/8AfNH2j/pjL/3zQBLgZzgZ9aWoftH/AExl/wC+aPtH/TGX/vmgCXaMYwMelGAQBgYFRfaP+mMv/fNH2j/pjL/3zQBNRUP2j/pjL/3zR9o/6Yy/980AF3ax3tnPazZ8qaNo32nBwRg1QsNChsr0XjXM9xOsXko0uwbEznACqOeBycmr/wBo/wCmMv8A3zR9o/6Yy/8AfNMCak2rt24GPTFRfaP+mMv/AHzR9o/6Yy/980gIrHTobBbhYi7Ced7ht5BwzHJx7VaIBGCMj3qL7R/0xl/75o+0f9MZf++aAJcDIOBkdKCqnOVHPXjrUX2j/pjL/wB80faP+mMv/fNAExGRg9Ko6jpceo/Z2M0sEtu5eKSPaSCQQeGBBGD6VY+0f9MZf++aPtH/AExl/wC+aAK+maVBpUEkULO5klaaSSQgsznqeAAOw4Aq9UP2j/pjL/3zR9o/6Yy/980ATEZ60VD9o/6Yy/8AfNH2j/pjL/3zQBNRUP2j/pjL/wB80faP+mMv/fNAE1FQ/aP+mMv/AHzR9o/6Yy/980ATUVD9o/6Yy/8AfNH2j/pjL/3zQBNRUP2j/pjL/wB80faP+mMv/fNAE1FQ/aP+mMv/AHzR9oA+9HIo9StAE1FAIIyOlFABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBBLzcwg9OT+lT1BJ/x9Q/j/Kp6ACiqGq61puh28U+p3kdrFNMsEbSHhnbov6GoNX8Q2mjXdjaSxXNxd3zMIILaLexC4LMewUZGSfWgDWoqG1ure9tkubWeOeCQZSSNgysPYipqACioLy8tdPtJLu9uYra2iG6SaZwiKPUk8CqcviLR4NCGuS6jbppZVWF2X/dkE4Bz7kgUAadFZ2j69pXiC3e40m/gvIY32O8LZAbGcfkRWjQAUVU1PUrfSNPlvrvzfIixu8qJpG5IAwqgk8kdBVugAooqFru3S7jtGnjW4lRnSIsNzKuAxA7gblz9RQBNRRRQAUUVU1LUbfSrI3d15nlB0Q+XE0hyzBRwoJ6kUAW6KpXWrWVnb38rzo32CIzXMaEM8a7S3I9wDj1qayu4r+wt7yDPk3ESypuGDtYAjP4GgCeiiigAooooAKKZLLHBE8srqkaKWd2OAoHJJNVJNXs0n0+ISNIdQz9neKNnRgF35LAEAY6EkZoAvUU2R1ijaRs7VBY4BJwPYdap2esWF9DZSRThTexGW3jlBjkdQASdjYPGRnjjIoAvUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUjMqKWZgoHUk4pcjGc8etABQRkYPSkVldQysGB6EHNLQBDanNuv41NUFp/x7r+P86noAKKKKAIV/18n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/9dJ9B/Wpaij/10n0H9aloAKKKKAIJP+PqH8f5VPUEn/H1D+P8qnoA8w8fQ3XijxR/YVppc2owWGmyyTiKaNPKnuFaOJjvIGVUSEY/vCqFmT4v1/wReXd5qFtdvpl7Ddrb3TRFJoWiRwNp4y27PqAvoK9YitLaC4nuIreKOe4KmaREAaQqMDcepwOBntUMOkabb3AuINPtIpw0jiRIVVg0hBc5AzliASe+BmgDxnSLq80n4beEYLO/vAmqXIhvXN/5ZiIWQiJHbPlbmXHGDxjvW5cL4lg0zR9NuNXurUXPiMW0c0V4J5xamCRjG8mOW3BsE8j5T1FehDw1oSxXkQ0bT/KvWDXSfZk2zkdC4x8x+tSWug6PZW1vbWulWUEFvL50McduqrHJgjeoA4bBIyOeTQA+OztbTS47OeRpreNAha8k8wvjpuZvvH3Nec+HbS21f4M+GLA6xa6fMWtnjkmAYNJHJ5gTaWGSdh4z2r0q/wBOsdVtGtNRs7e8tmILQ3ESyISORlWBFUYvCvh2GxmsYtB0uO0nIaWBLOMRyEdCygYJHvQBmeD9cv8AUr3XdNv7i2vW0u5SFL62j2JMGjDkFckBlzg4OK4UnWZdJsdXTxNrEdzceJH00qJwY0t3uXiKhCCCQOQzAkcY4AFet2GnWOlWi2mnWcFpbJ92KCMIo9eBxTBpWnCFIRYWoiSb7QieSu1Zd27eBjhtxJz1zzQB5pqN9qWh6L440+31a/lGnXVm1rPPcM80ay+UWXeecZLY9jijxH/adzL8Qb2PX9VtToojmsobe42RowtUkOQPvAnqp45PGTXpkuladP8AafOsLWT7UVNxvhU+cVxt35HzYwMZ6YpX0ywkW7V7G2YXoxdBolPnjbt+fj5vlAHOeOKAOHk8RyW+u+JTe6j9miGhW13bpJLtVGIm3MmT6hRn2FY+lW51PxJ4Cvr/AFO/Wa58Oeczi7ZPMkAt2I687sksO+BnpXpV3oOj389vPeaVZXEtsMQPLbozRD0UkcfhSXGg6Pd29pb3GlWUsNkVNrG9upWDaABsGPlwAOnpQB5l4Yv/ABPrWoWmri7lWf8AtSSG9hl1JRCkIkZTELfHDBQCD94kZzg1seFr26s/F0dprF/d3lzqC3Etpd2+oCazuI1bdjyv+WTKpA4GDz8xNdofD2inVhqx0ixOoj/l7Nunm9MffxnpxRY+HtF0y8mvLDSLG1ups+ZNBbojvk5OSBk880Aee+KtR12PxJq3hTT9SuYb3V2t7nTZVc7oIwjmYKewzB/5F96qP4s1HXvDWseJLO9uILcTaXaQJG5UI5kiafj1zNsP+4RXq72NpJfRXr2sDXcSlI52jBkRT1AbqAfSoU0bS47JrJNNs1tGk81oBAoQvuDbiuMZ3AHPXIzQB5rdabFF4i+JMzX16ZFsQ6QvctsYPbPnKZwQDkD0xxVvw1Bd6JrXg2NdW1C6h1bSZPtEFzNujVkjiZSicBMbiOByOtd7c6FpF7fLfXWl2c92sbRCeWBWcIwIZckZwQSMehPrU40+yWS2kFpbh7VCluwjGYVIAIQ4+UEADA9BQBx+s2t1rXxG/sc6xqdlY/2N57R2VwYi0nnFQ24cjAPbGcDPHFc9o+s6h4gt/Bmnapq93aW15ps801xBOYZLuaNlQKXHI+UlyARmvVPslt9s+2fZ4vtXl+V52wb9mc7d3XGecVTuPD2i3emR6bcaRYS2EZzHbPboY0PqFxgdT09aAMDwVrU9x4Pvrq/vJLqCxurqGK9wGeeCJ2CycD5jgYzjnFcn4c13UYvFGmyW01/PaarpNxdR299qYuZZCgRo3MYG2EkEjCnByeAVr1iG3gtrZLeCGOKBF2JEihVVfQAcAVRsPDmh6XMJtP0bT7SUFiHgtkRgW68gd8D8qAPO7O3XWvhlc6xP4m1O51PUNJmllgW9Kp5m3cyJEOF2kbcADjIOc1a0ovZw/D2ys9UvZLXUFl8/N0z7h9iZgoOeACAQOxru7fw/otpqM2oW+kWMN7OCJbiO3RZHz1ywGTnv60WXh7RdO8v7FpFjbeVK00fk26LskZdrMMDgleCR24oA8/0bW9X1K60/w/LfTi80JbptWlVyGmMeY4Nx6neGEnPXbVLToH1bVPhvfahqmoCa50aZnlF2yb5AsLdc9Wyc+oAz0r1aPTrGG6urqKyt0uLsKLiVYlDzBRhd5xlsDgZ6VXuPD+jXdlbWVxpNjLa2pBghe3QpFjptXGFx7UAcHbapq39v2/gl7+5N7BqzXMlwZD5j6cB5q5bqcsywn6GvTa57SPDtzb+JL/X9Uu4bq/uIltYRDAY0gt1YsFGWJJJbJOewwBiuhoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCG7tYr60ltp13RSLtYVy39l+IP+QN9o/wCJdn/j7z+82f3Pr7119FNMCG0tYrK0itoF2xRqFUVNRRSAgtP+Pdfx/nU9QWn/AB7r+P8AOp6ACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/wDXSfQf1qWgAooooAgmOyaKQ/dGc/jUnnRf89E/OnMoYYNRfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUedH/AM9E/wC+hTPs0f8AdH5UfZo/7o/KgB/nR/8APRP++hR50f8Az0T/AL6FM+zR/wB0flR9mj/uj8qAH+dH/wA9E/76FHnR/wDPRP8AvoUz7NH/AHR+VH2aP+6PyoAf50f/AD0T/voUjTxqpO9T7A5pv2aP+6PypRboDkAUAFspWBQetS0dKKACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/9dJ9B/WpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCFf8AXyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/wBdJ9B/Wpaij/10n0H9aloAKKKKACiub8aeKJ/CunWM9rpo1C4vb+Kxiha48kbpM4Jba3cenekh8Uyadpf23xfbWnh8PceTFuvhMjkqWHzBVAPDce1AHS0Vh2/jHw5d6FNrkGs2j6ZAxSW58zCo3HB9DyOO+R61z+h/E3S9V1TxNI97ZJoOki0MN+CQH85Tndnphxt6D3oA7yisPSvGPhzW4LyfTdZs7iKyGbl1kwIhz8xJ7cHnpxVNvHGjal4f1a/0DV9NupbCFnYySERxkA4L4G4LweQO3FAHUUVzNz478O6Tb2w1rWrC1upbeKZk8w4IccFcjJXIPOOnXFV7j4j+H7bxhZeHXvIjLdwLLHMr5Qs5URoMdSwbIPTFAHXUVj634q0Lw48KaxqlvZtNny1kblgOpx6D16Uy+8YeHdM1S30y91mzhvbgKYoXkGWDfd+me2etAG3RWLdeL/D1lr0Oh3Gr2sepzEKlsX+ck9AfQnsD1p6eKNEktra4TUYTDdXX2KB8nDzZI2D3yp/KgDXorkdZ8faLa22oW+n6xpjatapKfJuJGCI0Zw3mbQSADkVEPiXoMXin/hHru6ijuVtEneVWJQyHkxgYyTtw30IoA7OisyLxDpE39meVfwv/AGoC1ltOfPAXcSv0HJrLsvFLy+MfEmlXYt4LHSLe3mE7EqcSKzMWJOABtoA6eiues/Hfha/tjcWut2ksQnS3LKx4kc4QH0zg4PQ1avfFGh6c1+t5qltAdPWNrrzGx5Qf7mfduw6mgDXorjNY8e2qWPh6+0Ge01C11TWoNNkkBJCK4bcRjGGG0cH16V2dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/AK6T6D+tS0AFFFFAHDfFPQL/AMReH9Nt7DS/7T8jVILie085I/MhUNuG5iBznH41hz+Fr++0bw9Y2XgwaNbWHiO3vZrRruGUGEK2+TIYjqQNvU+leq0UAeQ654H8QXCeIprTT45Q2v2+qW1o8yKt5GigOvXC5P8Aex0rD8ZaZraeFviNruraL/Zseq/2WYIDcRyk+XIqsCVPB6H8e+K96qC8srXULV7W9tobm3fG6KaMOjYIIyDwcEA/hQB5RqfgzxL4vl8U3s+mpoTXumRWFrbG5STzWSQPuYpkAcbB3wabc+FfE+vvruqTeH4tIlk8ONpFvYpdRubiQnduyDtCjG0ZIPSvYKKAPMY/B2qtq99PPpyNHJ4Uj02NmeM5nAbcnXjqOenvTNF8O+ItB1fwdqJ0lroW+iJpV9GlxGGtm3Kd/LYYDB+6T0r1GigDzn4h6Jrl9rFtfeHdLuxqkVsYodSt72JEXLZMc0Un34+/GeawNb8Ba5ceKNaN3ZahqWna39naV9OvobdVZFCsJFkGSARlduePevZaKAPO9C0zxB4Y8Ya1GugLqNhq+oi7Gpi6jUwowAKurfMdmDjHXNc9a+FPFsMmj6M2hp9g0zxL/aRvxdx/vYS7nITOeA5znngYB7ey0UAeV/8ACF6wPBHxAs101BqOsapdz2g8yPM0TlTGS2cAfe4YjGT0zWrBo+s6V8Q7PVV0w3Wn3Ojw6fcyLMim2dHLEsGPzLg9s139Iyq6MjqGVhggjIIoA8k+Gujl/GmptHcR3OieHjNZaVJG25Mzv5rgN3KLtQ/WrXifwXres6z42gtoRHb63p1sLa7MqhRLCeY2Gdw3Z64xjNelWVjaabapa2NrBa26fdigjCIv0A4FWKAPIrXwHf6xoGvLqGm6pZ6pcWEcEEl7fwzBpIyXTZ5YG0KwXBPYn0qveeA/FOreEm1O7t/K8STa5HqtxaR3CKxjjBjSJZOVBC/MCeAT+Fey0UAeRSeDtW/sXT7y00jURexeJbfVrm2vr2GSWVEXazhlwoJyOM54r12iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIV/18n1H8hU1Qr/AK+T6j+QqagAooooAKKKKACiiigCKP8A10n0H9alqKP/AF0n0H9aloAKKKKAM7V9SfToYBDB59zczCGGMttBY5OSewABPSs6+1rUdKtrSTUorWLferDI0JaRWjKMcgYBByMY5q/rWnXF6lrNZyRx3lpMJYjJna3BBU45AIPaqs1jq2oNZSXgsojb3qThImZsIEYHkjk5b0A96Yiy3iPSVso7w3Y8mSQxriNixYdRtxuz+FLL4i0mGxt7xrxTBcEiIorMXx1woBPHfjjvWOPDuo21+NQtntXnjvri4SKRmCtHKoGCccMMehHNEPh7UrJrK9gktJb2KWeSaJyyxHzeTsOCRjA7c80WQGvJ4j0mOKCX7XvSdDJGYo2fKg4JIUHAzxzjmnya7psWoiwe6AuSypt2MQGPRS2MAn0JzXPv4Y1KKwt4rc2ovEV2+1pM8TRO7liAACGTnGDj9asL4auI9WnkZY7m1nuluSzXcsZRsgn5F+VuRkZ/GnZAb8mpWkM08MkwSSCHz5AQRiPn5vccHpVNvE2jpPFC16oeRUYZRsAOMruOMLkdjisnxTarf6xp9nbTFbucGK5RBybUnLEnsMrgfU0uoeHNQnOo2ds9oLDUJUkkd8+ZFjaCAMYP3RjkYpWQG9/a9jtdvPGEuBat8p4lJAC9Pcc9KS11ixvrya0tpjJNAWEgEbYUg4IJxjOe2ffpWJLoGp/a5o4WtPscmpJfl3dvM4KkrgDH8PXP/wBbX0fT5NOjvFlKEz3ks42E/dZsjPHXFGgBHr+mS3zWaXQadSwxsbBKjLANjBI7gGm2fiPSL9ytteKxERlJZGQbB1OWAHHf0rH07wxcWUyxSJFNDE8jwzm7l3LuDY/dfcz82CfT3p8vhi5m0/S7Vpol+zWM1rKyk/edFUFeORkHrinZBqTw+KrW51d0hmBsIrF7qSRonUjawGRkcjBPQGr1r4j0m887ybxcQx+a5dGTCf3huAyPcVg3WmarFYXt3fizVINGmtAIHYljgHdgqMD5en+QDw9qGtWRe9kt7cNpy20AhZmJOVbc2QOMqOOep/EsgNabxLYz6VeXOn3kPmW6BibiOQBQehK43EH1FWLjxFpVpetZz3YSdGVHXy2IUsARk4wM5HJNY174e1bVkv57t7OK5ms1tIkidimA+4sxIz16DFWdT8P3d7FrqRyQA37wtFuJ+XYFB3cf7JxjNGgDpvEzTxanFpts8t5ZyBERonIcZUMegxjceM54z0rTi1mwn1B7GKYvOjFGAjbaGAyRuxtyPTNQ6fZXdlq2osRC1pdSCdXDnerbVUqVxjHHXNU7XSL+HxGb1BBbWzPI06wzORcZGFJQjCsOCSDzS0AmXXVg1PWI72SOK0sfJ2vg5+dcnPqc9MCrVrrum3kkMcFzukmZ1RWRlOUwWBBAwQCDg1jap4avL6+1GeKWJRNLbzw5kZfmjBBVtvIBz1ByKJvDt6+mF7QQ2eprcefG5uZJgfl2Hc7DPK56DsKegGnL4n0eGKOR7wbXDFSsbtwp2ljgcLkEZPFP0/UpbvW9UtG8sw2vkmJlHJ3pk5Pesa68JyxTWxtFingSyFpJFJcyQZwSd2U6g5OQf61qaTpMunarfTARi2nigWNVckpsTbjkcj3zS0Akj8R6TLdPbR3gaVN3ARsNt5YKcYYj0GTVXw/rj6hoc+r3syLCpdiiwsvlKuc8nO/jByB6iqmn+HdRtzp1nNJa/YdPnaaORC3myZ3bQRjA+8c8nPFTf2dNpXw+u7GdkaWKynDGMkg5DHjIHrT0AvQ+JtHuI53jvMrBF50mY3Hyf3hkcj6ZqD/hJ7E3JkF3ELFYDIzGKQPneq7hxgp83X+may00PVNUsnmuGtImfTPskCI7HO7BLMccdBxzWtPoZutT8yUx/ZG05rN1B+bJYHI4xjANLQC5d61p9lM8M85EiBSypGzkbs7R8oPJweOvFRv4g0tLOC6N1mKdisW2NmZyOoCgbuMc8cViQeHdYg0vBuonvpLiNrho5niEsKJtCbwNw6ZJA7mksfDmq6abS6hNm9xBPOxhaR9hSTHAYgkEY9OfWiyA3hr2mG2uLj7UBFbojykowKhhlTjGTkHtWiDkZrjb+1fUfFNhbeYhmMStqkUOTGAhDpnPqxxzzg11dqbsrL9rWEN5jeX5RJ+TPy5z3x1oaGT0UUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhX/XyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/10n0H9alqKP8A10n0H9aloAKKKKACio5ZPLUYGWJwBTdk55MwB9AuaAJqKh8ub/nv/wCOCjy5v+e//jgoAmoqHy5v+e//AI4KPLm/57/+OCgCaiofLm/57/8Ajgo8ub/nv/44KAJqKh8ub/nv/wCOCjy5v+e//jgoAmoqHy5v+e//AI4KPLm/57/+OCgCaiofLm/57/8Ajgo8ub/nv/44KAJqKh8ub/nv/wCOCjy5v+e//jgoAmoqHy5v+e//AI4KPLm/57/+OCgCaiofLm/57/8Ajgo8ub/nv/44KAJqKh8ub/nv/wCOCjy5v+e//jgoAmoqHy5v+e//AI4KPLm/57/+OCgCaiofLm/57/8Ajgo8ub/nv/44KAJqKh8ub/nv/wCOCjy5v+e//jgoAmoqHy5v+e//AI4KPLm/57/+OCgCaiofLm/57/8Ajgo8ub/nv/44KAJqKh8ub/nv/wCOCjy5v+e//jgoAmoqHy5v+e//AI4KijaaSMN52M9tooAt0VXxN/z3/wDHBRib/nv/AOOCgCxRVfE3/Pf/AMcFGJv+e/8A44KALFFV8Tf89/8AxwUYm/57/wDjgoAsUVXxN/z3/wDHBRib/nv/AOOCgCxRVfE3/Pf/AMcFGJv+e/8A44KALFFV8Tf89/8AxwUYm/57/wDjgoAsUVXxN/z3/wDHBRib/nv/AOOCgCxRVfE3/Pf/AMcFGJv+e/8A44KALFFV8Tf89/8AxwUYm/57/wDjgoAsUVXxN/z3/wDHBRib/nv/AOOCgCxRVfE3/Pf/AMcFGJv+e/8A44KALFFV8Tf89/8AxwUYm/57/wDjgoAsUVXxN/z3/wDHBRib/nv/AOOCgCxRVfE3/Pf/AMcFGJv+e/8A44KALFFV8Tf89/8AxwUYm/57/wDjgoAsUVXxN/z3/wDHBRib/nv/AOOCgCxRVfE3/Pf/AMcFMZplkRfO+9nnaKLAW6Kr4m/57/8AjgoxN/z3/wDHBQBYoqvib/nv/wCOCjE3/Pf/AMcFAFiiq+Jv+e//AI4KMTf89/8AxwUAWKKr4m/57/8AjgoxN/z3/wDHBQBYoqvib/nv/wCOCjE3/Pf/AMcFAFiiq+Jv+e//AI4KMTf89/8AxwUAWKKr4m/57/8AjgoxN/z3/wDHBQBYoqvib/nv/wCOCjE3/Pf/AMcFAFiiq+Jv+e//AI4KMTf89/8AxwUAWKKr4m/57/8AjgoxN/z3/wDHBQBYoqvib/nv/wCOCjE3/Pf/AMcFAFiiq+Jv+e//AI4KMTf89/8AxwUAWKKr4m/57/8AjgoxN/z3/wDHBQBYoqvib/nv/wCOCjE3/Pf/AMcFAFiiq+Jv+e//AI4KMTf89/8AxwUAWKKr4m/57/8AjgoxN/z3/wDHBQBYoqvib/nv/wCOCjdMg3bw4HUYxQBYopFYOoYdDS0AFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/wCuk+g/rUtABRRRQBDJ/wAfMP8AwL+VTVDJ/wAfMH/Av5VNQAUVm6/qo0TQrvUdocwplVPQsSAM/iRXkFjoniHxw9zqHnrJ5bYLzSEDd12qB07egruwuD9tB1Jy5Yrr5mNStyNRSuz3GivLvh74i1CDWn8Pai7yD51jEhy0TrnK59MA/lXqNY4rDSw9Tklr/kVTqKpG6CisHxVrF7o9nYnT47d7i7vorRftG7Yu/Iycc9qpWXiyayu9Ss/Eos7WSxjila4tnZomSQ7RkEZU5x19fTmsLGlzq6KwH8aeH0s4bo358qZ2SLEEhaTaMkqoXcVAP3gMe9VL/wAe6TZ6jpEEcnn22oRvL9oiV2CqBxgKpySwII6jHNFmFzqqKxn8V6HHq40ptQQXhkEW3YxUOeiF8bQ3tnNNuPF2h22ovYSX2bmM7XVIncK2M7SyggNx0zmizA26K5fRvHek6noU2qXEv2RIGIlDq+AN7KmCVG4kLnAyRnFX08V6G+kTaoNQRbOB/Lld0ZWRv7pUjdnkcYzRZhc2aK5jw34l/t/xDrkME3mWNqtv5GYjGwLK2/IYA9R3rp6TVgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqtv8A6hfx/nVqqtv/AKhfx/nTAloopgXzpGDE7E4IHc9f8KBD6KQ20ePkURt2KjH/AOumxuXQEjB5B+o4NAD6KK4W48Wa/FFrWpRWmmSabpV5JbyRs7pM6pjJB5XOGoSuB3VFZia/pjw3soucLYxLNc5RsxKybwTxz8vPGaxL3xnaaZ4o8m9vAmmyabHcxbYWcli7ZPygnG0D2FFgOuornf7ce58TaZb2VxHJYXdhLcBgudxBTac9e54pLXxXp9roOnXeqalBJLdqSjW0Mn73HUqmC2B34/KnYDo6KhtbmG9tIbq3ffDMgeNsEblIyDzU1IAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKif/AF8X4/yqWon/ANfF+P8AKgCWiimSOUQkDJ4A+p4FAD6KQW0ePnUSN3LDP/6qaV8mRQpOx+AD2PX/ABoAfRRWF4p1e90izsTp8du9xd3sVov2jOxd+Rk457UAbtFcrZ+K5bK71Kz8SC0tpLGOKVri2ZmiZJDtGQRlTnHX19OalHi2wlu47iHUYv7NW2mmkDW0vmMEK5dTjG0A+nPbPZ2A6Wis6413TLT7OZ7tEFxC88TYJDRou5myBgAAg81l3HjjRl0fUb60nad7KHzDE0MiFiQdnVc4J43YwKVgOlorn4/Gei/2RaahcXJiW5+VI/KkLlgAWAXbuIGeoGK2LK9ttSsoryzmWa3lXcki9CKLAWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBLX/AI9k/H+dTVDa/wDHsn4/zqakMKKKKAIV/wBfJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/AF0n0H9alqKP/XSfQf1qWgAooooAhk/4+YP+BfyqaoZP+PmD/gX8qmoAzfEGljWtCu9PLBTMmFY9AwOQfzAryCx1fxH4Je5sFg8sSNnbLGWXd03Ke/b1Fe400opPIrtwuM9jF05xUovoY1KPO1JOzPMPh94d1CXWm1/UUeP75TzBhpHbOWx6YJ/OvUaQADpS1lisTLEVOeWhVOmqcbI5vxlo0+uWel20MJljj1KCW4CybCsQJ3EHIPQ9ufSqXiHwhbp4M1PTtB05PtF00RYb8tLtkU/M7nnAz1NdjRWFy7HLatY6jZeLrTXrHTzqEIsms5LeOREaP5gwddxAPTB5rDs/D2taP/wj+o/2f9pmtri7muLO3lQeUJxwqliAQvGee5r0Wii4WPNrfwnfw6tdWl5Z6nc2c2pG7jmgv0WHaXDbnQkHcvsOccVtaFBrOg3t5pzaO1zb3GoSXC3yToF8uRskuCdxYdMY5xXX0UXCx5nJ4a1yTwpb6QthMk+k6l9rikS4RBdIZJG+Rs5RsODlgMEVLN4a1BrFdRs9MvjfRanb3klvqF4kklysaleGBIU/Nxk/wj2Fej0U+YLHLeGrbU28Sa9quoaa9jFerbCFHlR2OxXBztJweR+ddTRRUsYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVVt/9Qv4/zq1VW3/1C/j/ADpgS1EriCVt2dj859DUtIQD1oEI13Fj5GDt2CnNJEpWMA9Tkn6mlCKDwKdQAVxmkeC7SW/1e71rTxJJLqcs1uJJSyNGdu1igbb1z1Ga7Oii4HB61pmuR6h4oSx0r7ZFrVsiRyidEERERjYMGOfcY/TqJRa63pGuW9/b6K98g0aGzIS4jQrKrMSDuPTkZI9e9dvRTuFjhtA8N6lol34cWWLzkgsriC4kRhiJ3YSAcnJHVeM9Kq6Noet+Hzoeof2Y128OnNZXFqk0YeImTeGUk7TnocGvQ6KLhYhtJZ5rOGW5t/s87IC8O8PsPcZHB+tTUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqJ/wDXxfj/ACqWon/18X4/yoAlpkqloyB1GCPqKfRQA1buLHzsEbuGOKYzieVdudic59TTyik8ilAA6UALXOeMdGn1u00y2ihMsaalBLOFk2ERAncQcg9D259K6OigDkPEPhG3TwdqWnaFp6faLoxFhvy0m2RT8zuecDPU1fvtIluvF1nctbq+nrYT28pJGMsVwuM55ANdBRTuB57pHh7xJYWupSEIL6ysjp+kyM6sJIwzMHIzgEjYBn+7zVe28N63d3eqSzWl7Etzoklmsl9epM7zE5HAYhV5OAOOvTNelUUXFY86vNI1u6fRdS/s3UIWs7Y2c9tb3kccw4X94jBsEEgjBIJwK6/w1p66XoNvarbz22C7GKeUSOpZiTll4PXPHrWtRRcYUUUUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBLX/j2T8f51NUNr/x7J+P86mpDCiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/wDXSfQf1qWgAooooAhlz9ohx/tfyqXLeg/OopP+PmD/AIF/KpqAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzoy3oPzpaKAEy3oPzqCOKSNAuFOO+7/AOtViigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UxopGkRsJ8uf4j/hViigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCLbJ/dT/AL6P+FG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf99H/AAqWigCLbJ/dT/vo/wCFG2T+6n/fR/wqWigCLbJ/dT/vo/4UbZP7qf8AfR/wqWigCG1/49k/H+dTVDa/8eyfj/OpqACiiigCFf8AXyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/wBdJ9B/Wpaij/10n0H9aloAKKKKAIZP+PmD/gX8qmqGT/j5g/4F/KpqACiisDxV4pg8LWltNLbvcNNKV8uM4YIFLO/0UD9aAN+iqt9epZaVc34HmpBA02FP3gqk8H3xXO6Z4yuLm40tdR0SWxg1RQbS4FwkqMSu8BsYKkjpxTsB1lFUE1vSZPM2apZN5cfmvi4Q7U/vHnge9VNU8VaRpmgvrH2uG5tVYIpt5UbexONqnOCe+M9AaVgNqiqEmuaRDaw3Uuq2KW8xIila4QI5HXac4P4VJearp2nLG19f2tssn3DPMqBvpk80AW6Kx7XxPpV5r11o8V1F9qgCHHmL+8LBiQozklQvPHGRV211TT76aWG0vrW4li/1iRTK7J9QDxQBbornZfFdrJ4n0rStPubO7S6E/ntFMHaIooIHB4zk9fSnax4hvbHWrfStP0g6hcTW7XB/0lYgqqwXuOeop2C50FFZserx29jFNrLW+lzurM0M1yh2gHGd3AI5X6bhU7app6WAv2v7VbIjIuDMojI6fezikBborntH8UWuotqck1zaR2ttefZ4ZxKNsgKKwO4nBJyela9pqdhfwPPZ31tcwoSHkhlV1Ujnkg4FFgLVFZkmt2k2lXt5pl3ZXhto2Y7bldgIBOGYZCjjqac+t6fa20T6hf2NpI0aOyvcqAN2cYJxkZBwe+DQBo0VjXvinSbDVrHT57uFZLyNpEcyoFUDGMkn+LPHrg1bur2aDVdPtESAx3PmeYzzhXXauRsTq/vjp1osBeoqpbarp17cSW9rf2s80X+sjimVmT6gHIpJ9X021u47S41C0huZMBIZJlV2z0wpOTQBcoqv9vs/Inm+1weVbsyzSeYNsZHUMc8Ed81F/bGmfblsv7Ss/tbfdg89fMPGeFznpQBdormr7xJd2mz/AEe1IbWItPGyfzPkcjLNj7rc/dPStltX01b8WDahaC8PS3My+Ye/3c5p2AuUVzul+K7S5vdRtb66s7WaDUHtII3mCtKAFIIBOSSWI4q1Zay9x4j1nTpUjSHT44HWTPJ8xWJz2420WA2KKq2WpWOpI72F7bXSIdrNBKrhT6HB4rAsPFYv/Emp2wutMi02wIjZnn/fO/y/MOcBQzbfr+VFgOporPbXdHS1+1NqtitvvMfmm4QJvHVc5xn2qWfVNPtYY5ri/tYYpFLo8kyqrKMcgk8jkc+9IC3RVGPWtKllgij1OyeS4XdCizqTKOeVGeRwenpVfWvEenaC9kl9OkZu5xCu51XbwSXOSPlGME+4osBrUVzdv4usv7f1Wxvbuytbe1MH2eWScL53mJuOCTg9ulbN7qmn6d5f26+trXzDhPPmVNx9snmiwFuisvxBrK6Bok2ptCZliaMbFbGdzqvX/gWamuta0qykMd3qdnbuGClZZ1QgkZAwT1xzQBeorHk8T6XF4lGhSXMaXZhEo3SKBksAE653nIIGOlXYtU0+e9ksob+1ku48l4EmUuuOuVByKALdFUE1zSZSRHqlk5GwkLcIfvfd798jHrUlpqen38Mk1nfW1xFGcO8Myuqn3IPFAFuisTUPFujWGiXOqrfW91b2/wArC3mRyW7KOcbvatW1u7a9t1uLS4iuIHztkicOpwcHBHHWgCaiql1qunWM8cF3f2tvLL/q45ZlRn7cAnmiTVNPivksZL61S8f7lu0yiRvoucmgC3RVSXVdOgvUspr+1ju5MbIHmUO2emFJyacNQsjCkwvLcxPJ5SOJVwz5xtBzyc8Y65oAs0VUGqac12LQX9qbksyiETLvJUZYbc5yByfSi01XTtQEpsr+1uRF/rPJmV9n1weOlAFuiufg8UW174pg0uwuLS7t3tZJpJYZQ5R1ZQF4OBwxrYe/s4vtHmXcCfZgDPukA8oEZG7n5eOeaLAWKKzNW1dLHT55beWzkukh85IprlYgyZA3Fj0Xnr0zgVVHivTX1TUNLS4h+22kYbYZV/eMVYlVGckrt544yKdgN2isPw74ktNb02yZrq0GoTW6zSWscoLpkA/dznHNV/FHiTUPDsTXUeifbLFAm+cXSxkMzbQu0gnqRz70WA6Siuei8RXiajpVhqOkmzuNQkmVVFwsgQRpuzkDnPTFSa54hn03ULPTbDTW1C/uleRYvOWJVRcZJY/UYGKLAbtFYl5rs9n4Um1afT5Le6RCFtJWDHzS21VypwQWIwR2NUZfFWoHU7q00/QZdQjsWWO7minRMOQCQiNy2AfUUWC51NFczfeKbxNau9N0rQ5dRexRGu2FwkezeNyhQfvHAz2rRttaFx4gl0k2zxvHaR3JZmGfmYjaQO4x6miwGrRUVxcwWkDT3M0cMKDLSSMFVfqTUEWrabPaLdQ6haSWzOIxMkylCxOAuQcZyQMUgLlFVLTVNPv4ZJrO+triKI4keGZXVD15IPFZNp4ot9R8WjSbGe0urX7C1y00EofDiQLt4OOhzRYDoaKqS6pp8FyttNf2sc7OqCJ5lDFm+6ME5yew70Qapp9zeS2lvfWstzFnzIY5lZ0xwcqDkUAW6KoprWlSXhs01Oya6D7DCJ1LhvTbnOeDx7VKNQsjCkwvLcxPJ5SOJVwz5xtBzyc8Y65oAs0Vl2urqTeNfSWdvHDdm3jYXKtu4BG7ptY5+71qRte0dIYJm1awWK4JELm5QLIQcHac888cUWA0KKqXGq6dZ3MVtc39rBcS48uKWZVZ+3AJyafeX1pp8Hn3t1BbRZx5k0gRc/U0AWKKrpfWkll9tS6ga02F/PEgMe0dTu6Y96V760jERe6gUTAmLdIBvAG4lfXjnjtQBPRWRdeIbE6JqV/pt5aXrWVu8pWGZXAKqSA208ZxTNJ1m41CWxV4bZI7jTo7xis48wO2OPL67efvevFOwG1RXOy+K7WTxPpWlafc2d2l0J/PaKYO0RRQQODxnJ6+lXjrKjxSND8k7jZG783dxgOE24/HOaLAalFZGn+ILe8l1BZdlsLO9+xBpJABI2FIx05JbAFaDXtqjTq1zCrW6h5gZADGpyQW9BweT6GkBPRWfa67o96ZBaarY3HloZH8q4R9qjqxweB71Tu/FGnHTrqbStR0u9uYY94i+3Iq4yASzZOBz1PfHrRYDcoqjc6zpdixS91KztnXAZZbhVIJGQOSOvNOvdW03TRGb7ULW1En3DPMqbvpk80AXKKydV1+20/w1c63bmO9t4YzIvkyArJg44YZHWoLDWtRYSTazpMWlWaR7/tEl8jrnI4OMY69adgN2iqtvqVjd2bXlte201qud00cqsgx1ywOOKiTXNIkspL1NUsmtYztedbhCin0LZwDSAv0VW+2LPpzXenmO8BjLQ+XKNspHQBunJ4zXN6d4r1m/wBcn0xvDXlPavELp/tyN5SuMhsY+bjJwKdgOtoqpa6pp99PLBaX9rcTRf6yOKZXZPqAeKzfDXiJNY8P6df3jQW9xelwkW/G4qzDC55PAzSsBu0VTg1XTrmeaC31C1lmgyZY45lZo8ddwByPxpLfWNMu7kW1tqNnNOUEgijnVmKkZDYBzjBHPvQBdormvEHiSXTtc0rR7KSwW6vSzM13LgIoxgYHJZiSB7g9a2otU0+e9eyiv7WS7jzvgSZTIuPVc5FOwFuiqkOp6fc3P2aC+tpZ9pbykmVmwDtJwDnAPH14q3SAKKKKAIbX/j2T8f51NUNr/wAeyfj/ADqagAooooAhX/XyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/10n0H9alqKP8A10n0H9aloAKKKKAIZP8Aj5g/4F/Kpqhk/wCPmD/gX8qmoAK4fW9F1PxL4sukjm+xWdnZfZkkntDIsxmB8wpkgcKFUkZ9K7iimnYDj9LTUX+Gt1p95bTi+trSez2mMgy7FZUK/wB4EbcEdaXwv4TigsNFv9QuNQuLu2tYzFBdyfJbMYwCFQAYI5HOSK6+ii4rHldp4cmt/h7ojnRpWlh1FbnUbYQfvpolkfIKkZb+A7T1ApdU0e51bS/Ft3p+kTxWlz9la1t3tyjyvGQZHWMjIyOOnzV6nRT5gseX65aPd+ILfUorW9h0i40828WzSfOMTb23K0RGU3ZyGxzn0qay0+PQdTik1TSr/VLF9KhgtJGsjK8W3O6JkAO0ncOvHGM9a9KoouFjz6ewkTxF4gSDTZoZ9W0+MafOtsdsUgikVgzgYjbJHesLTNAvLnTDFANRt9Tt9LntxA+mC3TLIAUMoAD5PKnJ9eK9eoo5gsebaNHHc+JfCj2Xh69sEsraaO7klsmiVWMYAUtjnkNz/tepNX/FdqjeMrC5urPV5rNbGRDJpyTFg5dSATHzjAPFd1RSuFji5rCHVdf8Kzf2bdSWFvBdKRfQOWjICKu/eMgnBwW5PWsFdNurCLSpbnSbqfSbDV70vaJblyqMW8pxHjlQSTketepUUXCx5HexJFpd1PNo1zDZz+JbeVLSS12tLGQuQIz13cjHqcHmrl/pN7q9p4ruNG0ueztLqG3jjheEwNcsjbpCFIBHykr05zXouoaZa6mtut0hYW9wlzHhiMOhyp/+tVunzBY80u7R9TutZvNH0W7s7T+wJrVke0MJmmOdqKmASQARkA+laNtoQu/Ekb3+mGWFfD8MIaaDKrJubcoJHDYPTrzXdUUrhY8zsrOaxh8FXuo6VdSrb2k1vcAWjSPExCiMMoBI6EDjiuk1+2uH8ZeGrmO2nlggS881o0JC5jAAJ6Ak8DNdRRRcLHAeCYZbHWPsVrZ3R0tLVis19p/2ee3YsD5RfA8zPJP0HNZXjmHUr681u2j0y5VtsRtTZ6aJDdYAJd5tpI2kYwCDwBzXqlFO+twsee63ouoSeJp9Jt7WZ9I1uaC5upVQ+XF5eTKpI6FwkfXrk1mazDqd5rcxGl3MM0GrxSQpa6YNjRq6/v3m25JIzwDxjnjNeq0UcwWPN7mwvYba+nayuikfiuO8IWFizQjy8uoAyw4PI9DVLWYtTvNcmI0u5hmg1eKSFLXTBseNXX9+823JJGeAeMc8Zr1WijmCx5RqVj5lt4q09vDl3canf6g5s5/sR2lTtCsJcYUKdx5IHPuau6/pOrXMni2zginkubyxsmikVCFnEZIkUN0yc429TmvSqKOYLHEeC7BBq11qCvfq7WyQvFPpgs04JI4AAZl5H0I5rK1nQ7iTQPGiQ6XKZrm/jMIjgO6VMxE7cDJGQTx6GvTKKV9QscPq+nW+k+LNPvZNHe50aOxe3jitbXzRBMWB3FFH8SjbnFZOj+Hro3fhNb7SpPsiTX832eWLetqjgGJX6gH0z39xXp1FFwseYw+Gza6Tvt9HaO5i8SiWNltyHEIm4YcZ2be/TFdH44tfMTRbw2L3cVpqKSTrHD5rLFtYE7QCSMlciuroouFjzq70RdQufG922kO/n2EP2FpbUhifs54QEZyGC8DkEDvWZqOk6gdRt59Rjvvs91pEMAkj00XbRsF+eNlIJQknOcdT7V6xRT5gscZ4j0yf/hV6adaRXVzLHFaoimI+awWSPqo5yAOfTBqjqWgm81Lx5cTaUZnls41s5Gg3F2EB4jOOTuC9O4Feg0UrhY8+trOa18VaRe3dhOTc6JFbCcWrSGO5DA5fA+UgdzjofSsrwjodxDfaVBfrqFvfWM0jMv8AZoCEkMCTcAfMrfU5OK9Wop8wWPMrbw4Y/hhpNn/ZDi5kuoGu4vs58xh52WLjGcY9eg9ql1/w9fO3i+20ixaFLm0tDGsUexJSrNvVexO0YwPUetekUUcwWPJp9AfU9B12a1jv5Lp7GOMW82lC0UlX3AKAAGcAEceoGa7ux8Q6ebnTdPgsby2+2pI8Ie1MSrs5YEHBB79MH1reqA2Vsb8XxhQ3Qj8oSkfMEznA9Of6elK9wscJ4tjlg8QyXum2F5c6g0cURt5tP8+2ulDZAEn/ACzK5JJyBwOO9ZMug3b6/qtrqB1CJrnVBcwTW+miYMm5SjCbGU2jgjIwM+pr1iinzBY4PSEi0zXdUg1XQ7q4vbrVTPb3a2ZlUxsRsbzMYXZ6Z47VlxJfx2em6EdI1Ez2niBZ5JhbN5PleeW3h+hGG/Qk4xXqFFK4WPPR4cubnSfGjwWRi1O7vJ1t5ZI9rSR7FwFJ/hOXGRxyawxoN3f6LqL2C6jHf/2Z9nNvJpgtV270Yx7gAHbAIHXg169RT5gscHoggu/G9leafoN5p1pHpskLtNZGABtyEJ05IGf1x3pninRL268Wx21vaySabrUcMd/IinCeTJvyzD7uUO0etd/RSuFjyMaNrd14R8QNfafcG8t7SHSrVBE2+VImyzKMZYMSDkdcV0xtRZeN9daTTpmOo2sRtJ47YuoZUcOCwHyk5HXrXbUU+YLHnejaC9jF4Gmi0t4LiISfa2WAqyboWz5nHGTjr3rofHdtcXng+7gtYJJ5mkgIjiQsxxMhPA9ACfwro6KV9bhY5LxU01r4o8NaitleXNvbNc+cbW3aUpuj2jIUHqTVXxBeaZrMdrJe6DrwVNzQXtvayJNbv0wAPnXPHJG08enHb0UXCxwGltquoR+HdL1bzzKLiW+fz8LN5EJ/deYB/EWaM/8AAfXNQeKFDaneXOl6Tr1l4hVgkFzaRExXWMbS5BKFemd2CB16YrvxZ24vje+Uv2kxCEyd9gJOPzNT0XCx534nVXuZpxpOt23iGKBRBfabExSdtudpK5BXdwQwzgVZgvb/AEnxWL3VdN1CaSbSLeOV7O0eZBMGYuMoCOpru6KLhY5rxZdXMnhiKez08z+dLEXWa0MrQISCZPJPJZeOOx+lcXHpN7dafrFubDUJbSfVbOVVuLLyjKuVEj+WqgAcc8dOvOa9ZooTsFjzbxBoN5u8XQaVpzpFcWtmyJDGUWbYx3quOCdoxgevvV7QRDdePlv7DRLvT7FdIMBaayMCl/NQ7enJA4/A46V3dFFwscfFor3HjXxJetabJja26WV1JFwrbG3FCeMghc46cVy/hjQrtZNPhcX9nqdjFMiq2mBI1dkZcmcDDgk5BycmvWKKOYLHk1h9nt18HaedCurG/tb5UuJpbXYGbY27En8W4/Nxnp9KsxJfx2em6EdI1Ez2niBZ5JhbN5PleeW3h+hGG/Qk4xXot7pltqEtpJcIWa0mE8WGIw4BGffgmrdO4WPNbzRbq7tr22n06eSGfxWkroYmw8BCBn6fcxnnp1qHxHoc0fijUfOhuk028tI4bdrTTFuggAIaPGCYyWORjGc9eK9Qoo5gseZahZTaXqUEmmWeoXl8IrSCSG807zIbtUCgOJP+WTLkknPUdO9dH41ku1GmJDZ+ZA07eddJZfapLbCnBRMHlj8u7Bx+NdVRSuFjkPA1hJ/wi97Y39rcxwSXdwqQ3UIiYwsc8qAAM5PTjk4rnrDT9bW3uxdaW122gafLZWUdzCdl2zMw3KP4h5SouO+SO9eoUUXCx5Tp9hqNxe6y0VrfPHceH5Id0mnC1R5s8IihRnAYgZyevJAqwmm6peIPslrcxyP4SForSRMmJg2DHkgYbr/OvTqKfMFjzbRo47nxL4Uey8PXtgllbTR3cktk0SqxjAClsc8huf8Aa9Sa2NU0L+1viLFJcR3i2a6SV8+CSSIeZ5o+UupHOCTjPvXY0UrhY8zfRbyw0XWBBZXsq22vxXccbB3kmiXy8lSeX6Hn2NVtfea/sPGV+2n3tvb3SWC232mAxmUrIRwp684+XqQR6ivVap6ppdprFi1peIzRFlcFHKMrKchgw5BBFPmCx5beNYyeHfFck0qpq15BFI1rFaPahEVlVdokGWBbGfXp6UtxFHfaN4mRIw2uXtpEVsbfTpYMRxsBlVcZbJPOPQeld2PBWkPFcrdm7vJbhFjee5uXeQKrblCtn5QGAPGOetW9M8OWel3j3olu7q8aPyvPu52ldUznaM9BnninzILHN6hoQvdb8ZT3GmGYyafElpI8G7c3lvuEZxychenfFc1qkdwLvTbaSEiWXw1DbXRmspLhodxIJ2INyuOfvcce1ewVjaj4Zs9Rvzfefe2tyyCOSS0uWiMijOA2DzjJ56+9JSCxianDb33wmmt9DL3sBshFAYoyWk24B+XGc5ByMdc03WtKn0Xw6xshe6k00sKyi+L3v2dAeZEiOcleuB7eldbp+n2ulWENjZQiG2hXaiAk4HXqevPOas0rhY8mTStTm0jX1isdQntDf2t0bee0ED3cageaFQADnaOAM8DPNXvEUX9ptpt9pOk3trY2d0WulGljczFNqSCJgN+zkZxxnjpXpdFPmCxzfgrT0sNGnEcl06T3Ukw+0Wv2cjOM7Y+y5GRwOtZ/9m6hNrXjkQRSxPeWsEdrMwKq7+Sy/K3TgkZx0rtKKVwseb6HZtNq3hVbLRLrT5NMt3TUJZbYxLzHt2biAJCW5yM+tZfhrQte06ys5rm3ndru0uLO1zAwfTJCWKsR2DnOWxxxzivXKKfMFjyrwxokqyWInj1GC8sLSaJoDpYiTJTaQZVGHyeRyScZ71o6NoL2MXgaaLS3guIhJ9rZYCrJuhbPmccZOOvevRKKOYLHL61pr3XjbQrlLXcsdvdBp/K3LG2E2ZPbnOM+9cppWmXH2Xw1pcWiXdtq2n6gJr26eAquwFt583GH3gjABOfwr1OilcLHLeBtJXT9Nu55bH7PeT3twzvJHtdl8w7evOMAY7d66miik9RhRRRQBDa/8eyfj/Opqhtf+PZPx/nU1ABRRRQBCv8Ar5PqP5CpqhX/AF8n1H8hU1ABRRRQAUUUUAFFFFAEUf8ArpPoP61LUUf+uk+g/rUtABRRRQBDJ/x8wf8AAv5VNUMn/HzB/wAC/lU1ABWB4q8UweFrS2mlt3uGmlK+XGcMEClnf6KB+tb9cPrei6n4l8WXSRzfYrOzsvsyST2hkWYzA+YUyQOFCqSM+lNCZ2YurczJCJ4jK6eYibxuZePmA7jkc+9ZOoeK9G02SxWa+tyt5K0aSCZNq7Q2WJJ6Art+pxXHaTNqej3mi3mpaXqM32OzuNMl+z2rudyOuxgMcqyqMN0zmo7bTZ7Xw34Xu7/SLhvseoXBuoPsxkkRHeXBKgElclT+INOwXOutvFdn/bmqWF9d2VrHbSxJbtJMEM2+NXOMnnlu3tWveapp+nvGl7fWts0pxGJplQufbJ5rhdS0IX48cXLaQ8kk8EX2NntjvbEC4CZGchgOB3GKzta0m/k1y5m1Jb4219p8MUckOmi7KkJh4zwTGxY5GMZJ68UWQXPSLrWdLsXZLzUrO3ZSAVmnVCCeR1Peqs3ibS7fxDFost1El1JD5qlpFAyWUKnXO47sgY5ArkY/DQaTxKLjT5borpFtBazz2+XkYQuG25H3shcgc5xUmn2j2Gu+Gr+/0y4kWTRY7V3Fq0jRXAMZG/Ayp4PJ6YNFkFzrrPWEbTJb3UZLK0jjmdC63SvGAGKjL8AH27GpJNe0eG1iupdWsUt5c+XK1wgR8dcHODXAJpl5b2mjXV7pdzcWFpqt5JdWogLth2YRybMZYAnPAPBzVrWbg3dxYpa6FdWemPDMfNj0cSTs5fmMKykRhvvZYc98c0WC51l74p0mw1ax0+e7hWS8jaRHMqBVAxjJJ/izx64NTWmrqbK7utQks7WKC4kiMguVZAqtgFm4Ct6qelcHptnPY2/gu91PSrqRba2nt7gfZGkeInAjDKASBxgccU+TS72KOO6udMubixt/EV1cT2whLM6MWCSherAE54ByDRZBc9CTU7CS0S7S+tmtpGCpMsqlGJOAA2cE54pbLUbHUkd7G9t7pEbazQSq4U+hweDXnE+j3N9Y6vNBpNxFpt9q9o8Nm8BViilRLIUxlVbGeQOBmt6CP/hHfEniO/h0q5Nkba1ZY7O3z5rDeDsHAJAIziiwXOyopFO5Q2CMjOD1pakYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ2v/Hsn4/zqaobX/j2T8f51NQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/AK6T6D+tS0AFFFFAEMn/AB8wf8C/lU1QzHbLE5+6CQT9amoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooprsEUsTwKAI7X/j2T8f51NUVspW3QHrUtABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQAjKGBBGQai+zAfdkkUegapqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76o+z/APTaX/vqpqKAIfs//TaX/vqj7P8A9Npf++qmooAh+z/9Npf++qPs/wD02l/76qaigCH7P/02l/76oFuuQWZ3x/eOamooAKKKKACiiigCFf8AXyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/wBdJ9B/Wpaij/10n0H9aloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAIV/18n1H8hU1Qr/AK+T6j+QqagAooooAKKKKACiiigCKP8A10n0H9alqKP/AF0n0H9aloAKKKKAMXxF4t0PwpFBLrl+LOOdisbNG7BiOoyoOOveneHvFOi+KrWW50S9F3BC/lu6xuoDYzj5gM8EfnWb8RPCSeNPBd7pQVftWPOtGb+GZfu89geVPsxqx4G8Lw+DvCFho0e0yRJuncfxytyx/PgewFAHRVzfhbxvpPi+41OHTRcBtPm8pzMgUSDLAOmCcqSjc8dOlWPGV9fab4O1W50y1uLm/W3ZbeK3iaRzI3yqQq8nBIJ9ga8x0/wh4s8I6pp8EBiuFvdEn0sS2Ns6rbSIpeJ5Tk8l2YbuBzQB6LqPjTT7HxVo2ho0M7aibkSTJOuLYwx7zvHuPpit/wC2WuIT9phxPzEd4/ecZ+X1454rwvwloCP4j8CxR+DtRsHsYLyDWbmewMaSu0BUFpP4gTuwTx84A9Kt6PoOvxyXlleaHNeW/hTTry201LqMhL95mYJtPRh5QCkD+9jigD2SHVNPuIppYb62ljh/1rpMrBP94g8fjUkF5a3MkkcFzDK8RAkWOQMUz6gdK8C0zRtYePxQ9toV9bwX/hhlMMejmzja5DY8tEAyxAJAJ+Y89sV0EHg+903V4U8PaXJp0t14QlgknjhMa/azt2726CTPc88e1AHrceo2MzTrFeW7tB/rgsqkx/73PH40sd/ZzWhu4ruCS2AJMyyAoAOvzdK8OfRTd/DI6Tong7UdO1m2htv7TaTT9jXgRx5iByR5pJ+fGeRx6Ci48M3Z8G6jPp9lqdzZzataXN7pY0g2PmQxjEgihB5z8mcd0NAHrGh+LbbXfEmu6RaxqyaULY/aUlDpMJkLDGOmMY6mtk31ot4tm11ALphuWEyDeR6heted/DSwWDxj4xvrPQLvRtKvBZGzinszbBtqOH2r0Hzckf7Qz1rI0jSpbPVvEVlf+G75/FF5e3Utjrhs/MiRXRhE4m/gA6bc8ZH4AHrcN9aXEssUN1BJJCcSokgJQ+4HT8abFqVjPIY4b23kcJ5m1JVJ2f3sA9PevFvCOg3S614a/s/wvqGkXGmafcw65cz2/lrduybVAb/lqS43A9gR6cS+E/Br6Ynw5u00Ca3vM3S6pIbVg21o2AE2R06AbvXigDtNL+IkutXkn9n6KJtPXUl09bn7fErN8zBpPLPO0bcgZJbPA4rrptX023uvss2oWkdxx+6eZQ/PTgnNeNaf4UurLQPD4t9AmguF8aJPP5dmVcW6PLtdsDPlgNwTwAfesuzj0d/HM82tCGKwt/EtxMl3JprzNO5YosbXABQJuwcHpgZxjNAHvv26zKB/tUG0yeUG8wYL9Nv19utNOpWAl8o3tsJPm+TzVz8v3uM9u/pXips9Zi+z+Hz4e1ZpbbxkuoPdLbEwG3MuQ4fv97PsAScVeg8Nz2Ph3x/rA8JJqOsy61dC1jvLUsZrcyKQUB5ZPmdsL97FAHper+LdE0bQJ9buL+GSxhYKzwOJMsSBtGDyeelSx615+vQ2FvAk1pLatcC9juEK5DbdoXO4/wC8OO1eGP4R1PUfDPju2tdDumSYWN3p6S6ULQNIhIkMMQHynaGGB8xB5+9z19xpl1qfiMXHhrSLrSraXwrd21pus2tVgnaX5VIwAjE/MPbmgD1KG/s7hplgu4JTCcShJA2w/wC1jp+NEF/Z3Mpigu4JZAgcpHIGO09DgHofWvE/DOg3H9oaUdK8LahoxsNDuLbWJJ7XyheTNGAqqf8Alqd4LbvQj6Vd8J+E5tG1T4aXdtoc1pMbW7XVpVtmVgTDlRMccHd03fQUAez0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/AK6T6D+tS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVy6/D3w0uofbPsUp/0j7ULdrqUwCbOd/lbtmc89K6iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAhX/XyfUfyFTVCv8Ar5PqP5CpqACiiigAooooAKKKKAIo/wDXSfQf1qWoo/8AXSfQf1qWgAooooARmCjJpuZOyL+Lf/WoPMyj/ZJ/lT6AGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjMn9xP++j/hT6KAGZk/uJ/30f8ACjey8sgx6qc0+igA6jIopkX3CPRiP1p9ABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf8ArpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/wB0/wAxUlABRXN+Pdfu/C/gnUtZsI4JLq2VDGk4JQkuq84IPQnvWFp3xFl1PUvDMUdvFFDqFveNqEbqxlt5rcLuQc8YYnqDkY6UAeg0Vztl420e/GgGB5j/AG6JDZZjxnYu5t3pwKxU+L3heSSFQNT2Ts8cUgsJCskqkgxqQPmf0Az1FAHeUV5t4j+JMS6BoWs6LLcJby6/Fp99E9qTMq4cyR7CCQ/A6c+lbcPxI8PyaLc6k5vIPs90tnJaTWrrcee2NsYjxksc8Y9/Q0AddRXHzfEvw7baImq3L3cERvfsEkMls4min2ltjpjIOB79RWnd+LNN07wymvait1ZWz4CxTwMsxYnCr5fXcT2oA3aK838UfFO2tvAWr6vosN0NRs5Et3t7q0ZHtZHxhpUP3VxnBPBOB1Nbo8TQeGfBNlq3iO+u5FYqktxcWfkyZdjjfEo+XHTGO1AHV0Vxt18TNEs4Ld57XVllmhe5a2+wSGaGBWKmWRMZRMg4J6ijVPid4e0u4eEi/uylrHeM1naPKogcZEhYcBcdScdaAOyorgLrxhcy+NLi2s79F0dvCp1aGQQh8OZCBJjgkbcfLkZqxD8Q9MsNJ0VLqa91XUb2wS72WNizSNGQMytGudi59/WgDt6K5fVfHmk6NqcdleW+porPHG919hk+zxNJjaGkIwCcj1x3qZPGmmTeJZNCghv554ZRDNPDaO8EUhXcFaQDAOPwHegDoqKK4zUX1DWLaW/Sd47NbmSCOMXLQRJGhYPNK64YjKHABAAI96aQHZ0Vx/h+/uYIdKneeaWy1J3h2TSmUxSKGKsjkbmRghxnnlfeuwpMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK8f0X4n+I54NB1DUF0Ga01bUfsAs7XzEuosyMm/BZgQNuTwOo9a7RfiJoL6ydNjN47ee9slytq/kSTqCTEsmNpfg8d6AOsormIfHWi3tho1xaTyMNaEn2PEWT+7UlywzwFwc1laZ8Q7C28OaJJeXF7q99qEDzKbLT23yIjYZzGudoHA689qAO8orjx4vtLHWvEcuo6ts07TbW2naCS0KG3DqT97q5bj5cAg8Utt8SdAuNN1O8b7bbHTYRPcW9zatFMIz91wp6g+ooA6+iuc8P+N9H8SajPYWX2uO4ihW4Vbm2eHzYicCRNwGVJ710TsqIzscKoyT6CgBaK4HUpNRvNKg1qe4eOCeJrgK149vDbx8GNSUIZpG3Dk5Ge1bWhXdzb3NnaXEs8sF9afarc3DbpYiNu+Nmx833xgnng5p2Fc6SikJABJIAHUmqMOtadcM6xXIYopc/KR8o6kZHP4Uhl+ispvEOnGCaSGYyNHGZAuxhuHtketFtrCXUluyyRRxPC0jq6sGBGM4JAGBnrTswNWis+LW9OmjldLkFYl3vlGBC+oBHI+lLFrOnzRTSJcArCAznawwD0PTn8KVgL9FZM+sxvHbtZyB911HDIGQggN7HBrWoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/AK+T6j+QqagAooooAKKKKACiiigCKP8A10n0H9alqKP/AF0n0H9aloAKKKKAIz/r1/3T/MVJUZ/16/7p/mKkoA5vx94fu/FXgfU9EsZIY7m6VAjTsQgw6sckAnoD2rDl+HcqfFGPxLaXEKaZLDMbm1JIYTyIEZ0GMfMFTOSORnnNegUUAeV+G/AHirTdS8KDUbvSH0/w61wsfkGTzZkkRlDHIwCMrx9Tk1a0v4e6tY6P4Us5biyMmkatLfTlXfDRs0hAX5eW+cdcDrzXpVFAHlt18O9f+zTmzudM+0/8Je3iCHznk2eVtIVGwud2cZA4x3qvf/C3WdbsNRv9SvNPXXbvVINRWGJpBbARIUWMsMPyrHLAZz0r1qigDzNPh5ftp2jqlnpWn3Ft4gg1S5SC5mlV441IPzOCS/PsPeum8ceGrnxNotvFYXEMF/ZXkV9atOCYjJGcgOBztOTXTUUAeVan8OPEOueHvF7311pia54ha1AjhZxbwpAy4G4ruJIBycdcdq7Dxv4euvEui21lZyQJJFfW9yxmJClUcMRwDzgcV0tFAHnHjL4fXuseLBr1hFp96stmLS4tL+4mhUYJIdWi5PXBUjH4msCbRdfXxtrmieG4tKgVtBtbOX7S0myFCGXMeAScc4De30Ps1FAHmy/DrULDULc2FzbS2q+F20KRp2ZX35LLIAARgk8jPA6ZqKx8D+KfDl1pOo6HPpE15Fo0Ol3kN60gjzHyJI2VcnnsQOPc8enUUAeSeM/hx4o8Uajqbm802aC58hrV7meYGzKbS6RoAVG4g/NycHHfNbM/gzW5/iLDr0P9mafClyHmubOWVZruELgRSx42Mf8Aaz2GK9CooAK5a8tL7ToNRsY7F73TL0yOhg2tJA0mS4KMQGXcSRg55xiupooAwLaG/wBW1O1vLyzays7PLQQyMpkkkKld7BSQoClgBknJz2rfoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPJ9B+FV94eh8OajZf2WuvaddTG9k+by7q3kdsjdszvVSoUkcc9qm0L4Y3WjeJVkltdLvdOj1Br2C6lubhbiLJLAeWP3ZYE/e7jORzXqVFAHnfh74eXukeLNSvp7q2k0xEuF0m3Utug89g8m4YwMEYGCeCayLn4a6+3g3QtFij0V7vT7Z41v/tE8U1rKWJ3xOi5YYx8pAyRXrdFAHmeqfDPUdYTxRFd6nCf7Vs7GKG4wS/m24yWkXGMMwHQngmor7wD4n8QR+IdQ1m50mPVr/S10y2jtDJ5KIG3lnZhnJb0BwK9RooA5Gy8LXtt8QLXX3ltzaxaAumMgZt5lEofIGMbcDrnOe1daQCCCMg9RS0UAck0GoaXYR6TJps97ZQSRtaz2wR22I4ZUdWZcEYA3DI6HitPTra+vNVOrajbi2KRGG1tt4ZkViCzORxuO1eBnAHXmtqincCO4hFxbSwklRIhQkdsjFYD6ZfLbI101uI7K1kSPyiSXymMnPTgfnXR0UJgc3a6be6hZWjTtDHFHZtHFsJJbegGW444x+NTDR7ueOJLgxRhLR7bKOWJyAA3QenSt6ii4rHONot/cxMLhrZHS1+zxCMnDcjk8dOOlWrvTL2SaSW1nSJzaLArZIIYNk9umOM1s0UXCxzceh3iPJMBCGNxDOsfms33M5BYjOTnrXSUUUNjCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v8Aeb+ZqSo4vut/vN/M1JQAUUUUAQr/AK+T6j+QqaoV/wBfJ9R/IVNQAUUUUAFFFFABRRRQBFH/AK6T6D+tS1FH/rpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/3T/MVJQAUUUUAFFFFACM20Zpv7z/Zok6p/vCn0AM/ef7H60fvP9j9afRQAz95/sfrR+8/2P1p9FADP3n+x+tH7z/Y/Wn0UAM/ef7H60fvP9j9afRQAz95/sfrR+8/2P1p9FADP3n+x+tH7z/Y/Wn0UAM/ef7H60fvP9j9afRQAz95/sfrR+8/2P1p9FADP3n+x+tAY7trAZ7Yp9Mf/AFifjQA+iiigAooooAKKKKAITJI7ssQX5eCW6Zo/0n/pl+tFt0k/66GpqAIf9J/6ZfrR/pP/AEy/WpqKAIf9J/6ZfrR/pP8A0y/WpqKAIf8ASf8Apl+tH+k/9Mv1qaigCH/Sf+mX60f6T/0y/WpqKAIf9J/6ZfrR/pP/AEy/WpqKAIf9J/6ZfrR/pP8A0y/WpqKAIf8ASf8Apl+tH+k/9Mv1qaigCH/Sf+mX60f6T/0y/WpqKAIRJIjqsoX5uAV6ZqaobnpH/wBdBU1ABSEgAk9BS1HN/qH/AN00AMDzSDcioFPTdnNL/pP/AEy/Wnw/6mP/AHR/Kn0AQ/6T/wBMv1o/0n/pl+tTUUAQ/wCk/wDTL9aP9J/6ZfrU1FAEP+k/9Mv1o/0n/pl+tTUUAQ/6T/0y/Wj/AEn/AKZfrU1FAEP+k/8ATL9aP9J/6ZfrU1FAEP8ApP8A0y/Wj/Sf+mX61NRQBD/pP/TL9aP9J/6ZfrU1FAEP+k/9Mv1o/wBJ/wCmX61NRQBD/pP/AEy/Wj/Sf+mX61NRQBD/AKT/ANMv1o/0n/pl+tTUUAQ/6T/0y/Wj/Sf+mX61NRQBD/pP/TL9aP8ASf8Apl+tTUUAQ/6T/wBMv1o/0n/pl+tTUUAQ/wCk/wDTL9aP9J/6ZfrU1FAEP+k/9Mv1o/0n/pl+tTUUAQ/6T/0y/Wj/AEn/AKZfrU1FAEP+k/8ATL9aP9J/6ZfrU1FAEP8ApP8A0y/Wj/Sf+mX61NRQBD/pP/TL9aP9J/6ZfrU1FAEP+k/9Mv1o/wBJ/wCmX61NRQBD/pP/AEy/Wj/Sf+mX61NRQBD/AKT/ANMv1o/0n/pl+tTUUAQ/6T/0y/WkLzRjc6oVHXbnNT0yb/Uyf7p/lQA4EEAjoaWo4f8AUJ/uipKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/9dJ9B/Wpaij/10n0H9aloAKKKKAIz/r1/3T/MVJUZ/wBev+6f5ipKAMjxPrq+GvDd7rDWz3ItUDeShwz5IGAfxrJ1fx/p+l6NoGpRwvcprU8EVuiMAVWTHzn2GQD7kCrHj+1uL3wPqVvawSzzuE2xxIWZsSKeAOelcPqngvV7aS63WzT2Fjf2y6QkQ3ssUt5HPMSByAuFUZ6Kh7UAekw6ti/1GK8ayt4LeaOKKQXQLOXUEB1wNjEnAGTnIPerNhqunarG8mnX9reJG5R2t5lkCsOxKk4PtXm3iHQ7y/u/FMT6XcT293rmluFMDMs0SrAJCOPmUYYE9Bg5rp9D0ttO+IXiKSCxa2sZ7SyKMkWyJ5F80NjjBIG3OPagDqpOqf7wp9Mk6p/vCn0AUtQ1H7E8EMcD3FxOxEcSEDOBkkk8AD+oqSwvY9Qs1uI1ZMkqyOPmRgcEH3BFUdU322q6fqHkyywxLLHIIkLsu4Lg4HJGVxx60/QYZYrGSSaNomuLiWcRsMFQzEgH3xigDUooooAKKKKACiiigAooooAKKKKACkf7ppaR/umgCu7OCFRck9z0FKjFlyVKnuDSOzoQQu5e4HWlQsVy4APoO1MCxTH/ANYn40+mP/rE/GkA+q2o3g0/TLu9ZC4t4XlKg43bVJx+lWazvEEUk3hvVIokaSR7OVURRksShAAHc0AczcfEvT4PhqnjP7LK0bAKLQMBJ5m/ayZx2wxPHQZrpbjX9KsY7ZtQ1KzsnuVBiS4uFjLZ7DJGfwrye+8Ea1/wjd5ELSR9MGjPew2wUmX+0HtRCyBPvcAO3T70nrWn42h1G7kutNOlXQil0ZY4JrPShcy3UhDZiaVlIiVTg4OD8xIINAHpz6jYxm5El5bqbVQ9xulUeSpGQX5+UYBPNWFZXQMrBlYZBByCK8d1rSNW1N9Jvl0a9kj0zTLT+2IWjdX1MbkfyVUj5zHtZj6k7O5FewxuJIldQwDKCAylSPqDyPoaAI7bpJ/10NTVDbdJP+uhqY8DNAGFoXiZNc1TVrD+z7yzl0141cXIUFw4JDAAnjA7+tbtcD4W1b7R4/8AEEx0vWYIdRFt9nludNmhQ+XEQ2WZQF54Gevau+oAKKKKACiiigAooooAKKKKACiiigBkv+pf/dNYd5NPFGq20Jkmc7Vz91fdj6VuS/6l/wDdNYd5LcQRrLBEJQp/eIPvFf8AZ9/bvTQBZzTyxstzCY5kO1sfdb3U+lbkX+pT/dFYdnLcTxtLPEIgx/dofvBf9r39u1bkX+pT/dFDAZc9I/8AroKmqG56R/8AXQVNSAKjm/1D/wC6akqOb/UP/umgBYf9TH/uj+VOZlRSzMFUDJJOABTYf9TH/uj+VZ3iG3nutGmjtwWfIJQDJYA5IH+e1AF+C5guVLQTxygHBMbhsflTZr60t32T3UET4zteQKcfjWDpeLI3d9tvJPkRWiWzEWTnHAHBI71Q1XY+sajFJtWBzF5kxiZ2TAB+Ujp+NVbUVzs1ZXRXRgysMhgcgis2z1eGWW5iuZoInjuGiRS4BYDGDgn3qzaXcVwzxwxuscaoVcphHDDI2/hXM3UGY9Utjpk0l3PcsYZPJ4xkchuwHP50kgNm/wBXurDe76azQhgqyCZfmz0wOtObVrpryW2t9NeZoQhkPnKu0sM456026hml1PSYpFeSOINJK+07d4XCnPrnNZ2sRRy3Nw1vYXy6kzqI5lDBTjAyCDjGKasBr6nrEOmPBGymSSZgAqnoM4yaij1V59cms0e2WCADeWf52OCTt7cHrWXqmlal5klyWiuHllTG2NiyKDwBzwvrTrrTbmU63sgHnSJDsdU2hzjL7T780WQG3Pq1nDZTXSTJMkIG4ROGPPAHFU314Q2t21zbG3uYEDCJ3B3Z+7gj9axEs5ntbqSCO4aU24iaNrMRjG4ZAxwWAzTvscjWupLa291JbvCmw3EZ8zeDjavcgDP0osguacXiCYRfNbpdOkfnTNbP8safj1PXirt/rVvY6bHeEFxKAY0HBbIz/KsrULaOJFWGC/juHtgmLaPCSHnhuOuevtUV5od/HYbw0cvl2qxLFtLMpwN23HcnPPpRZAbdzqy20tmn2aVhcsih/wCFd3Yn19qZf6z9juHhitZLgxR+bMUYDy1/Hqe+KoX8lwttpcL2s8ssM0U0hhgYqFGePr04ou5Jbe51CQWlxImoW6eVtjJKsFI2sOx5zRYC7c608KedDYTzWyosjzDCgKRnIz97jr6U661h4F82KxmmtljEjzAgAKeeAetZd610tpaaS1rd+QkSC5liiL7sAfKpHH41JrMiXdoLcWmoptjBhWOM7HJAwGHsR0PvRYC9c64sTqILaSdRALiQqwXZH689T7UXOttAnnpYzyWiorvOCAMN0wD161jajbXEsjG8gull+yIkJtY8qWx8ytj37dMVNqRkuNPhtp7S+W5jiXYsMeYnbAPI6YB7dqLILmnfavPZxvcLp7SWgVWE3nKuQcdjz1OKS51qa2TzX0y48lFRpnJA2bgOAD97GeaS9iubqXSIJojt3+bOVXKqyrkAnpgmq+t3E1xcrYfZLs2YIaeSKEtv77Vx+p/yQC2usxLqs1vNLBFAsSOkjtt3E/Wr8t3bQIjzXEUav91ncAN9M1ztz5a6vc3E+mTzxS26LEPIJw2Onse1RW9tLYTWL6jZS3MYtPLAWLzNj7iQCPoQKLBc04NdZ9LtJ2tzLdXTMscMXGcEjOT0GB1q9HqCLbLLehbJiSuyaRRyPQ965xLKVNN0iS4trryoTMJkjBDqGJxwOccc+1K5v/s1qk1vMYTJJslktxNMifwqQehPv7elFkFzqHu7eOBZ3uIlhbpIXAU/jVSw1RLqG7nleFIYbho1kDfKVGMHP41hQ28tvY6PJdWc0kEDTCWPyslck7SVpFtZjZmX7DN9mXUjM1sYsMYyBg7e+PT/AAosFzeutXijEC2ii8lnYrGsUgwcDJyegxT7bVrSexS6klSBWJUrKwUqw6isuSSNLuy1G3sJ47aJpEkVYdp+ZRhgo7e/tVSSK6jtopHtGUXNzLM5+zea8IONowehNFgub95qkVtDC8S/aXnbbCkTA7z9emPenw3w+y+deR/YyGKkTOMZ9j3FcxFZXC2FhJPb3fk288oeNFKyBG74HbrnHrUqRXI+x3N3bXM9lFPLiORd7qhA2Fl68YP0osFzb1HWIrGyW6jie5ib+OIgqOccmn397dWeWisDPCqb3k81VC4zng+1Zuryifw+1vaafdL533I1tyNuHBOQOmetWdVaTUNLgjihnVbmdEkDRkMibuSR2HFKwAdbuDZxTx6XO+6IzN8wAVcnuepwM49DTpNbVhbCztpLmSePzQgIXao65z37YqLXbm5SNLG1tpykq4kmiiLhE6EDHeqF9Akslnm3vobKO2KRGKIiRXzjDd+QPxzTsBqS62xt457SxmuI2i81myFCjuMnqwweBVyPUrR7OG6adIopQCplYL+HPeufkn1CLQ7PT/sdwjyR4mkjhLbEyRjA/iI/n+UkiRQ3tlcvp9xJYJbGJEaElo2B6lfcd6LBc1NU1m302zS4OJvMP7tUYfN6nPpRLqqW+sG0nkhih8gSB3bbltxGMk4rG1XTbq5tp7yCFfLaJUitjCRJEuRkADgHP6VPdhodZE9/YtdKbQJmKAum/ceBnOOP50WQGjcaslvqlvA8kK20sJkMrNge2DnGKdd6qsLW6WsX2uW4yY1jcAEDqc9KwILWSzfTHvrGWaOO3cOBFvCksSM/gRUkNr5FlBLPBfwP50rwC2TLRK2PlPpntRZBc37bVLW4sEvGkWGNjg+awXaRxg1Dd6wsbxx2cJvZHQyYicYCDgnP14rEisJrOHTri6tZZoRLLJNFt3sm4fKSO/TJ9KuecLXUotQi0+4W2e2aERpDhlbfnlR0z/WiwXNy0uor20iuYSTHIMjPUe1TVn6HbS2mi20My7ZACSvpkk4/WtCpGFMm/wBTJ/un+VPpk3+pk/3T/KgBIf8AUJ/uipKjh/1Cf7oqSgCOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/wDXSfQf1qWgAooooAjP+vX/AHT/ADFSVGf9ev8Aun+YqSgAooooAKKKKAGSdU/3hT6ZICQCOoOaTzR3VqAJKKj80f3W/KjzR/db8qAJKKj80f3W/KjzR/db8qAJKKj80f3W/KjzR/db8qAJKKj80f3W/KjzR/db8qAJKKj80f3W/KjzR/db8qAJKKj80f3W/KjzR/db8qAJKCMio/NH91vyo80f3W/KgB+1fSjavpTPNH91vyo80f3W/KgCSmP/AKxPxpPNH91vyoBLuDjAFAElFFFABRRRQAUUUUAQ23ST/roamqsHMDuCpKsc8U77Wv8Azzk/KgCeioPta/8APOT8qPta/wDPOT8qAJ6Kg+1r/wA85Pyo+1r/AM85PyoAnoqD7Wv/ADzk/Kj7Wv8Azzk/KgCeioPta/8APOT8qPta/wDPOT8qAJ6Kg+1r/wA85Pyo+1r/AM85PyoAnoqD7Wv/ADzk/Kj7Wv8Azzk/KgCYgMCD0PFR/Zof7n6mm/a1/wCecn5Ufa1/55yflQA77ND/AHP1NSABQAOg4qH7Wv8Azzk/Kj7Wv/POT8qAFuekf/XQVNVYuZ3QBSFU55qzQAVHN/qH/wB01JTXXcjL6jFACQ/6mP8A3R/Kn1WScxIEdGJAxlRTvta/885PyoAnrNn0S1nnlk8y4jExzLHHKVWT6irf2tf+ecn5Ufa1/wCecn5UwJY40ijSONQqIAqgdgKdUH2tf+ecn5Ufa1/55yflSAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnoqD7Wv/POT8qPta/885PyoAnpk3+pk/3T/Ko/ta/885PyprzmVCiIwJGMsKAJYf8AUJ/uipKai7UVfQYp1AEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/wCuk+g/rUtABRRRQBGf9ev+6f5ipKjP+vX/AHT/ADFSUAFFFFABRRRQAUmBS0UAJgUYFLRQAmBRgUtFACYFGBS0UAJgUYFLRQAmBRgUtFACYFGBS0UAJgUYFLRQAmBRgUtFACYFLjFFFABRRRQAUUUUAFFFFACEA9RSbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAIAB0FLRRQAUUUUAIVB7UmxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpRsX0p1FADdi+lGxfSnUUAN2L6UbF9KdRQA3YvpShQO1LRQAUUUUARxfdb/AHm/makqOL7rf7zfzNSUAFFFFAEK/wCvk+o/kKmqFf8AXyfUfyFTUAFFFFABRRRQAUUUUARR/wCuk+g/rUtRR/66T6D+tS0AFFFFAEZ/16/7p/mKkqM/69f90/zFSUAZ2t6q+jWH2pNMv9RO8L5FjGryc98MwGPxrC8L/EGx8U27XkOl6pYaeI2cX1/HHHC21tpUMHPOc/ka66vF7Ox1bTvglotnL4ba6mGouLmC709p3tojPKfO8g4LkAjA9Gz0oA9f/tGx+w/bvttv9kxnz/NXy8f72cVlS+KIE8WWGhxxCVbyzku1ulkBUKhAxjvnPXNeP2Xh64Hgi7s7/TtdgSHxFJd2G3RhKFXywVMlsBgxkswwowDxxg07VPDPi/xBbeH4rHSk0K4Oi3cdzFBbtHCoMmRFxxGZMDIyCAzUAe8QTw3UKzW8scsTfdeNgyn6EVR1XUpbRoLWzhWe+uSwhjZtqgKPmdj2UZHuSQO9QeE547nwrprxaXNpSiBU+wzQtG0BXgrtYA4BHB7jB71HrLnTdWstaaN3tYopLe42KWMauVYPgc4BTBx2Oe1NAY9j4n1aaRnAt72JYjOYo7WSB5IgcF4mZmD444OCc+4rsbe4iu7aK4gcPDKgdGHRlIyDXJR6vpFtqF9fWk6ahf3GIrKC3nEpKbF+VVU4jXcCSTj1Pauj0WwbS9EsbB3DvbwJGzDoSBzj2zQxIvUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGeH/AIjW3iR4XtPD+ux2MrOPt88Ea267MhiWEhIGVI6da6ZtY0xI5JH1G0VIwpdjOoChhlcnPGR09a8t8FeDtRs/hndXNxc69HePa3yDSJWKxAsZAuIiu7J4I55Jz3qlP4cGjeAPCNtD4SidrlUbVJn0n7ZcQP5XUxHksSxXLZC+nSgD2R9Qskijle7gWORS6OZAAygZJBzyMc0kWo2MzxJFe28jzJviVZVJdfVeeR7ivE/D/hS+u7HwFp2saHdy2dpqGoefDd2h2xxkMY/MGNoBOMdj0GRSad4Ll02x0W7tPD9xDfweMhmVbVvMSy3sMk4yIsY5+7znvQB7eb20F39kN1CLnbu8nzBvx67euKEvrSQQmO6gYT58rbID5mOu31x7V4jpnhXUV8fy/wBqxajDfLrxvoryHSPNWaLdlc3Qb5YyvylDwPSqX/CPeJdIv5pbTR76SDwfeNJpcSQP/pcc9xucR8fNiPg4zjNAHvEmpWEVubiS9tkgD7DI0qhd3TGc4z7U6a+tLdFee6giVlLqzyBQVHJIz2GRzXi48MT6LY+DLjXfD99rWlw2E7XtnFbee8V3MfMLPF3PzFc44I7cUaR4Lv7mT4c2OvaPPNYwNqUk9vPGZEto2CtDHKeQOi4DemMcYoA9P0fxdZ6rc60jiO2h0y6FsZ3mGyXKqwYHgDO73roa8LuPDuuWXjfUtafSri78O2WuRy/2ZHauWlBjCCeNQPnEZ24ABH3umK90ByAaAOd1vX7i1e5isFhAtAn2m4mVnVGfG2NUXBdzleMgDI9ag0rxFes6f2isT27z/ZTMkLQvDN2SSNi2M5GCCRkj1qQ3lvoOsahHqLCG0v5VuILmTiMPsVSjMeFPyAjPr7VmWf2O702z0PTZDc3Dzw3OoXCy+cEKsrsXkGQXYoFAB/ICqEdxRRRUjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/9dJ9B/Wpaij/ANdJ9B/WpaACiiigCM/69f8AdP8AMVJUZ/16/wC6f5ipKACigkAZJwKhN1CP4/0NAE1FQ/aof7/6Gj7VD/f/AENAE1FQ/aof7/6Gj7VD/f8A0NADkgiiZmjiRGb7xVQCfrUlQ/aof7/6Gj7VD/f/AENAE1FQ/aof7/6Gj7VD/f8A0NAE1FQ/aof7/wCho+1Q/wB/9DQBNRUP2qH+/wDoaPtUP9/9DQBNRUP2qH+/+ho+1Q/3/wBDQBNRUP2qH+/+ho+1Q/3/ANDQBNRUP2qH+/8AoaPtUP8Af/Q0ATUVD9qh/v8A6Gj7VD/f/Q0ATUVD9qh/v/oaPtUP9/8AQ0ATUVD9qh/v/oaPtUP9/wDQ0ATUVD9qh/v/AKGj7VD/AH/0NAE1FQ/aof7/AOho+1Q/3/0NAE1FQ/aof7/6Gj7VD/f/AENAE1FQ/aof7/6Gj7VD/f8A0NAE1FQ/aof7/wCho+1Q/wB/9DQBNRUP2qH+/wDoaPtUP9/9DQBNRUP2qH+/+ho+1Q/3/wBDQBNRUP2qH+/+ho+1Q/3/ANDQBNRUP2qH+/8AoaPtUP8Af/Q0ATUVD9qh/v8A6Gj7VD/f/Q0ATUVD9qh/v/oaPtUP9/8AQ0ATUUxJY5PuMDT6ACiiigAoqJriJDguM/TNJ9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAlZVdSrKGU9QRkGkjjjhQJGioo6KowKj+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqKh+1Q/3/ANDR9qh/v/oaAJqKh+1Q/wB/9DR9qh/v/oaAJqKh+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NKtxE5wHGfpigCWiiigCOL7rf7zfzNSVHF91v8Aeb+ZqSgAooooAhX/AF8n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/8AXSfQf1qWoo/9dJ9B/WpaACiiigCM/wCvX/dP8xUlRn/Xr/un+YqSgCG55CL2ZwDUwAAwBgVBcdYv+ugqegAoqjq2s6doVkbzVLyG0twwXfK2MsegHqfYUzR9d0zX7Z7jS7xLiON9j4BVkbGcMpAIOCOCKANGiioZbu3gngglnjjluGKwozAGQhSxCjuQAT9AaAJqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAgnAVonH3t4Gfap6huekf/AF0FTUAFMlJWJyOoBp9Rzf6h/wDdNABAoWFMDqATUlMh/wBTH/uj+VE00dvC800iRxRqWd3OFUDkkk9BQA+isPSPGPh/XrxrTTNUhuJwhcIoI3qDgspIAYcjkZFblABRUN3d29jaS3V3PHBbxKWkllYKqAdyT0FTUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHOoaF8joCRUlMm/wBTJ/un+VABES0SE9SBT6jh/wBQn+6KkoAji+63+838zUlRxfdb/eb+ZqSgAooooAhX/XyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/10n0H9alqKP/XSfQf1qWgAooooAjP+vX/dP8xUlRn/AF6/7p/mKkoAguOsX/XQVPUFx1i/66Cp6AOI8WSW9t498H3WpMiachukWSTiNLllXy9xPAJAkC+9P8V69bwT6M2nanEoXXbeHUDBMOFdHAWTB6H5OvtXW3lla6hava3ttDc278PFNGHRvqDwapx+HNEi0l9Kj0ewTTnOWtVt0ETH1K4wT70AcNc6lqWsXPjO20nXIkMWo2kNqWu/LUgRRmSGNxnYzEOMgEg5rFK2uta34TVr3XLT7Pqd5Y3IuNSZ3hlW3ZsLKCd3UANnJBI9q9TPhvQjYyWJ0bTvsku3zIPsqbG2jC5XGDgcD0pr+GdBk0lNKfRdPbTkbclqbZPKU+oXGAeTz70AeaatrOoDS/FevnXry21bSdTe2srBJiItisgjRof+WhkBzk5PzcEYq14kfVLq78d3aa5qlmdGs4bm0gt7jaiSeQXO4D7wJXGDxyeK9Fl0DR59Si1KXSrF76EAR3LW6GRAOmGxkYqeTTbCX7X5llbP9sXZdbolPnrjbh+PmGOMHtQBxWgm+0/xxp9vLq1/exanoz3c6XUu5VmV4/mReAgIkI2qAOBXf1ALG0W4iuFtYRPFGYo5BGNyIcEqD1C8DjpwPSp6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxtbs7/fFqGmyt9ogBzAT8sq9x9a2aKAOa046nrl/Ff3SS2NnAf3duThnbuW9q6WiihgQ3PSP/roKmqG56R/9dBU1ABUc3+of/dNSVHN/qH/AN00ALD/AKmP/dH8q5P4nxySfD7UgqO8QaFrlUBLGASoZcY/2A2fbNdZD/qY/wDdH8qcQCCCMg9QaAOX13WtNbwpff2PqFobxtKuJLAW0q7yFjyDGBzgHb09BWJB4kN1rng6G31lCs+i3Nzdfvgyk7Idkkgz2O/k/wC1712Vh4e0XSp5p9P0iwtJpxiV4LZEZx6Egciks/Dmh6exay0bT7diWJaG2RD833ug74GfXFAHjmvNdr4J8QaRq19qc2rrpf20zR6kbi1u41cKZEHGwHPKYAx64zXYXaeb4wsvDkniDUbbSI9Ke9inS+ZZbmUykHM2ckIuDtz/ABDOQK7Ky8N6Fpsdyljo2n2qXI2zrDbIglHowA5HJ4PrTH8K+HpNNh06TQtNexgYvFbtaoY0YnJIXGASaAPPNL1PV/Elt4Kt7nWb6GO9OoJPcWr+U93HEcRvkDjIUHIweSRjNQWcmr2el2uqv4i1W5msvEv9lrHLPmOS3+0+SQ6gfOxBzubJyBXrP2Cz8y2k+yQb7VStu3ljMQIwQp/hBAA4pn9lad5Jh+wWvlGf7SU8ldvm7t3mYx97dzu655oAt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBS1WxfULBoYrh4JQQySIcYYdPwrnRPr+rkaVNC1n5Zxc3a/xj/Y+tdfRTuA2NBHEqAkhQBknJpJv9TJ/un+VPpk3+pk/3T/KkAkP+oT/AHRUlRw/6hP90VJQBHF91v8Aeb+ZqSo4vut/vN/M1JQAUUUUAQr/AK+T6j+QqaoV/wBfJ9R/IVNQAUUUUAFFFFABRRRQBFH/AK6T6D+tS1FH/rpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/3T/MVJQBBc8CNuyuCanBBGQcikZQwwarmzQnpQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NADrggtGgPzbwcVPUUcCRnIFS0AFMlGYXA6kGn0UARwMGhTB6AA1JUD2qM2cU37Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWaKrfY0/yaPsaf5NAFmiq32NP8mj7Gn+TQBZoqt9jT/Jo+xp/k0AWajnYLC+T1BAqL7Gn+TTktUVs4oAkiGIUB6gCn0UUARxfdb/eb+ZqSo4vut/vN/M1JQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/AK6T6D+tS0AFFFFAEbcTKT0II/l/hUlNdA4waj2SjpIcfhQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUVDsm/56H8h/hRsm/56H8h/hQBNRUOyb/nofyH+FGyb/nofyH+FAE1FQ7Jv+eh/If4UbJv+eh/If4UATUdBzUOyb/nofyH+FHlu333JHpQA6H7mfUk/rUlAGBiigAooooAhX/XyfUfyFTVCv8Ar5PqP5CpqACiiigAooooAKKKKAIo/wDXSfQf1qWoo/8AXSfQf1qWgAooooAKKazbR0yTwBSYk/vIP+Ak/wBaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jRiT++n/fJ/wAaAH0UzEn99P8Avk/40Yk/vp/3yf8AGgB9FMxJ/fT/AL5P+NGJP76f98n/ABoAfRTMSf30/wC+T/jR+8Xk7WHoBg0APopAQwBHQ0tABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQAw/69f8AdP8ASn1Gf9ev+6f5ipKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGRfdP+8f50+o4vut/vN/M1JQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/rpPoP61LQAUUUUARn/AF6/7p/mKkqM/wCvX/dP8xUlAHN+PPEc3hTwdfatbRJLdJsjgRz8pkdwik+w3Z/CqVqNb8I6dfa14p8UDU7GG1MssS2KRGNxz8hXBI7AHvjkVueJfD9n4p8O3ui3+/7NdJtZkOGUggqw9wQD+Fc8ngnWL/TL7TPEniqXVLC4tDapFHZxwFc4xIzZJZxgY6D25oAhtfiYhi1AanoN9ptzb6XJq0EMzo32m3UEkgqSFbp8p5GahtfidNeq8a+Gr+3mn0xtS08TyxYuYxjPRvlPOcHqB24yQ/DW9nj1B9a8SPqN3NpEmkWkv2RY1t4nUgsVDfO3TnI9PppW/gNIr3QZ5L8yR6XpLaW0Yh2+cGVVL53fL93pz160AZWheO9em+H1hrl74cluLmYD51u4IY5F2580lmARe2Dzmn2vje08R3ngq+tZNQtk1Ka6T7PHKmwtGh3LKMHcARkYI7Gqv/CrdROi6Npz+I4Jho1wz2Xn6aHTyyuAsiF8OwzkNxj0q9onw0/sd/DzHWDOdHu7u5ybYL53ngjHDYXGeoHPoKAGaR8U4tUu9LD6Bf2thqV09lBfSSRlDOpb5cA7sHaecdeO1SaX8U9O1TX7axisZlsbu5e0tb4zRkSyLnOYwd6qdpwxHNOsvhv9j0Xw9p39q7/7H1VtS8z7Pjzss7bMbvl+/wBeenSmeHfhqvhvWlmtLyxk0yOd54oJdLjNwm7J2ifOcAnI4zxjOKANLwd40l8YiS4g0O7tdPTen2ueRNryK+0qqg5Ixzu6cEda5iJPGg+I8nhw+N55IItMXUN5062BcmUps+5wMDrXa+D/AA3/AMIn4bh0j7X9q8uWWTzfL2Z3yM+MZPTdjr2oTw3t8ey+J/ted+mrYfZvL6YkL792ffGMfjQBl6d8Q7XU4tCWKwnW81S7mtWtWYb7Yw7vNL/7uB/30KztC+KqazJossvh6+stN1iVre1vpZYyrTDd8u0HIBKkAnqe1QeC/Dzz/ELXvFZsL2xsJSVsre8j8tzK4Tz5Qh5XcY15PJ5rI+HHgHWJvDvhefX9QnhtNKlkuoNHkshE8c299rO5OSBncBgfeoA6TS/inp2qa/bWMVjMtjd3L2lrfGaMiWRc5zGDvVTtOGI5rva4Hw78NV8N60s1peWMmmRzvPFBLpcZuE3ZO0T5zgE5HGeMZxXfUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v8Aeb+ZqSo4vut/vN/M1JQAUUUUAQr/AK+T6j+QqaoV/wBfJ9R/IVNQAUUUUAFFFFABRRRQBFH/AK6T6D+tS1FH/rpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/3T/MVJQAUVWvrRr2ARLdXFsdwO+BgG+nIPFcXFPqCeF9J1L7beXVzc3kGYnlCqfnPyg4GAehzmmkB3tFczN4u+zWzi5s44b1br7N5L3ICA7Q24yEcLg+mc8VJPrrX3g2+1G1IhmjjlX5HDhHXI4YcEdwfeizC50VFcTZatqGjXOnNqF+97ZX1k9wd6DfEyJvbkdRjjmk/4TeTUdN1JLazEVylk1xCyXKvhehJwPlYA7tvt2osxXO3orgbbxRN4d0WxN1ZtN58azSPLqCvIdx6qpycYGccAZx61tXvixbSLWZBZ+YNNaEf63Hm+ZjnpxjPvRZhc6SivPtQ13VdPm117V3kK30UaF3yIgR0AbI56fjmusvtXl0/TbaaWyJvLiRIUtlkH+sbsX6Y4POKLBc1aKwJte1GO5SyTRxJf+S08kS3I2rGG2ghtvJJ7YFQSeLXl8o6fpxuley+2ktMI9qgkEdDyCKLMdzpqK5m313ULnXAIbZGsX0+O6VWlCkbsnPTrn5cZxxmqlz4rS70vUUeMxS26xPmyvA24M4HDheCDweD1osxXOxornbnxNNbXV0P7N3WdrcJBNceeARu24IXGTjcP89I08YwPrQsRDH5Rujah/tC+ZvHGfLxnbkYzmizHc6aisjQdXuNbszdvYi2t24iYzbmfBIPGBgZFZFj4naGz0qCO3aRrmDzBJeXYUt82Nocr8zd8ccYosB11FYOralqNr4i0m0tIY3huBIXDSBd20f7pxjrx16VQ0XW7uDyYbq1Zra4v5rdLpp8nducgbcZxxjr2osFzraK5nS/GMGqapDaxwxiO4MghcXCs/wAvPzJjKggHHJo1PxjBp2qS2hhjZIGjWZ2uFV/mx9xMZbAIJ6UWYXOmornx4nC6+umS20XzvIiNFcrI+VBI3IB8uQOOc1THiNtT00TmEwKLmBMW95+8BaTG1xtyvuO4PWizC51lFcynjGB9aFiIY/KNybUP9oXzN44z5eM7cjGc1TuPFl/daLPdWNpDE8csakG5DSJmTaQ6FflJ6f8AAs54osxXOyorMu9VbT1083cCxi6lEMhEmRExUkc45GRjPFZun+LV1GO1MNi4km84sjSAbAihgSSP4tyemN3tRYZ0tFcrF4zUpctJaxf6MY2lMFyJVEbNtLAheSp6j9a2bbU3vX1Fba3Di0kMSMZMCVwoJHT5QCQM896LMDRorktL8SalLpWmK9gt1f3isyYmCBkUDLsdvy8kDGDWmPEcI8NPrDwSL5eVeDILCQNs2/8AfXeiwXNqiuQfXrrTtT1O71K2MIhtIStstwHUszsAc4AHJweO3epU8ZGSA+VZRTXIuo7YRw3QdDvUlSHxjsQeOKLMVzqqK5W51i4u5rCKSJrO5h1VIJ4ll3AqY2YcgDKkEdu1TR+KpJWhlXTT9huZ2t7a4M4y8gyBlcZUEqRnn6UWHc6SisXTvEKalNYRQwHdcW7zzAtzBtO3HTn5sjt0NUz4xg/tr7AsMZjF0LQubhRJv6ZEeMlc8ZzRZhc6aiubs/FUtw9rJcad9nsrl5Y0uPPDcoGJyuOAdp/Kqf8Abd9e63odw1o9rZzJcSRr5+TMojyCygYHYjr1osK52FFc1Z+K5JDaSX2nfZLe7geaGUTiTIRdxBGBjjJqN/E8slmftWny2kd3Zyz2siXALOFTd2HyNtII6/pRZjudTRXLHxLcW9qBb6a9ylvYRXUsklyAwQqSc8fM3H489O6xeIb/APtPVnFoJrG2t45kVH+fBRmGBtyS3HfjHeizFc6iis3RdUbVrI3JjgRd2F8mcSgjAPJwMHnGCKp6/wCJP7CkXfbwyRbA5zcqjnnBCpglsdewosM3qK5y+8USWd1ehdO8y0sniWacTAHDhSCFxz979Kp+Idcu57C/jsbZlt7a4jgkuxPtYPvXICgZI5AJyOtFhXOvorH1S9FrrWlptuWLrOwSKTAbagOCuPmPpyMGjQtbk1q1knEEEYUAqqXG85OflcbQVIx79aLDNiiub/4S+AWltcNbOA9vLPcJv+aARnaRjHJL/KOlQR+NUayu5mtImlgWJxFBdLKGV3C/eAwGBPT6UWYXOrornpfEstkl4uoaeILmCBJo4Um8zzQzbQAdox82AfrTPEj3ctzo9mkRMdxOfOVLlot2EJ27gM46n8BRYDpKK4uw8TnTtEsIpNk91O07brm6EShVkYcs2eegA9u2Kv8A/CW7vsYisHka/jR7QB+HYnDqxx8u3qTzxRZiudLRXEvqd2dZthZJcTuNSuojDLdYV8J644UdQMHGKsjXHvdY0eRw9r5b3cV1B5m5VaNR1I4bHX8aLBc62iuc0bxbDq9/HbeTFGJo2khK3CyNgEcOo+4cHOMnvWbrOraq1t4mhZRFDa7BFJHLhkyFIxgAnIOevGcc0WC52tFYK+ILpVvkudOjt7m1SOQI90oRlckZLkYXGDnr7ZqtF4uNxYpLBYrLO179j8tLgFS20sGD45HHpRZjudPRXIXniVcWF5dBrNba+lhuoxJuGVjbjIxu7Y461bn8UTwrYBtPjjkvIzKvnXQRMZGFDbcFyDnHH1osK50lFYWs6lqNprek2tnDHJHcNJvVpAu/CE4ztOMdcjrjFRW/ihppraRrBk066uDbQXXmglnyQMpjIBIIzmiwzoqKyb7V7mLU/wCz7Cw+1zrD50m6YRqqkkAZwck4PHFRy+IPKtL+c22fsl2lsV8z724oN3Tj7/T2osBtUVyt74nu3i1iK0tYklso5cF7gCQbR9/yyv3ecjqDjHGakHiPUFihhXShcXYtRczqtwAFToMHbyxwTjA+tFmFzpqK5q68Vuqh7HTjcxfYVv2ZpxGVQlsjGDyMfz/G5pWuvqF+bWayNszW63UJMgffGTgE4HB6cc9aLBc2aK5WDXru2S7zC15I+sPZwoZAm0bcjnHTj9arapq13qtnZRR2rRMdSNpdRLdFMsoJ271Gdp6546e9FhXOzorlIPG1vLceXHBGYD5qxN9qUyEopPzJjKg7Tg89vWlfxhLFaWU0+nwwPeqXgWa8VF2AA7mYjjORgc59qLMLnVUVy3/CXy3CRNY6Z9o32Ru3zOE2AMVYdDkgj8atr4hnu5Yo9M077STbR3MpeYRiMOMqvQ5bAPoPeizHc3qK5q28YW9zrCWaxRCGSdoEk+0KZCwB5MYGQpIIBz6etPu9ZlsPFE1u8N5cQG0jdY7eEybW3MCTjpkAflRZhc6KiuNs/FFzZeFbG9uUiuHlWVnaa5WJjtcgBRgljj09Kv3XiiVCDZ6abiP7At+zNME2xnPGMHJ4osxXOjorkdZ8Rz3el6immWjskVmsstwZvLMe9Ny7RjkgHPUU2PXDpd3rdxcO8qRraLFE0mBuZPU8KCeSfbNFgudhRXLReMGnVI7exjnumufs/lw3QZOU3Bg+MEcc8cYNXbLX5bvWpNNe0ihaI7ZN1x8/3c5VCo3LnjIPvgUWY7m5RWV4glurXT1vrR2zaSCaWNf+WsQ++v5ZP4VlWeuagfLaO1e8udQL3MEDSCNYbdcBSTg8ng/U9qLAdVRWBYeJ47+SNY7V1DWT3R3NypV9hTGPUHn9KsSa6sfh621T7OzSXKR+VbqwyzvjauT7nrRYDXorBvdcvtOslmutPtopGdl2vfKq4ABGCVySeRjHaqz+LZJRCbHTTcb7H7a26cJtXJBHQ5IIosFzp6KzZtW26FHqkMSFZI0kCzTCJQGx1Y8DGaxYdeOsT6TLEDDtv5IJUSXcrYiY8HjcOQelFgOsorl7fxgZ7Ca6NiuVZY44EuAZWkZtoRlwNh79+PWtXStWlvri7tLm0Nrd2pXzEEgdSGGVIbAz0PaiwGnRRRSAKKKKACiiigCOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/wDXSfQf1qWgAooooAjP+vX/AHT/ADFSVGf9ev8Aun+YqSgArKj8P2kemWNgJJvKspUmjJYbiVORnjp+VatFAGRc+HbW4kmmE1xFPJcC5WWNgGjcKF+XjoQOQc9asS6YtxpE2nXN1PMsyMjysVDkH6DHfjipI7+OTVJ7AKwkhjSRmPQhiQMf981bpgYNj4R06zd3lkurxjAbdTdS7tkZGCq4AwMUtr4XgtbO4s/7Qv5baaBrcRySKRGpGPl+XqO2a12uoUu47VnxPIjSKuDyqkAn/wAeFTUXYHM3XgfT7rj7VexK1vHbyLHIo8xUAC5yvsPbin6h4MsdRuLiV7u+iW5CCaKGQBHKDCkjB9K6Oii7CxhXXhSxu21EvLcKt+yO4Vh8jp0ZeODVu60aK90yGzubm4d4WWRLkMBIHXo2cYz+FaVQx3cEt3NapJmaAK0i4Pyhs4/kaLgZMvhpJnWZtT1BboI0TXCuod0Y5Kn5cAA9MDipovD1jBIGi8xALL7EEDDATOc9M7vetC6uPssSv5M02XVNsS7iMnGfoOpqai4GI/hi1ZYkW5ukRbIWLqpX95EAQM5Xrz1GKh/4RC0eGaOa9vZfNgS3yzINqIwZQoCgDp/OuhoouwsZc+gWtxBfQvJMFvJknkIYZDLtxjjp8g/Wi30RLS/luLe9uo4pZTM9sGUxs56nkZGeuAetalRXNzFZ2stzO+yGJS7tgnAHXpRcCHTNOh0nTorGBnaKLO0yEE8knnAHrWXJ4TtpNOi077deizSNY2h3IQ4DFgT8vByeoxwK2BdZvRbCGbBi83ztv7vrjbn+93x6VPRcChqGlJf3Fpci4mgntWYxyRbc4YYYEMCORUS6BarBbRCSbbb3Zu0+YZLkscHjp8x/TmrsVz5t1PB5EyeTt/eOuEfIz8p7471PQBl6doiaXIBbXl0LVWZktWKmNd3XHy7sc8DNEmiIdTlvoL26tnm2+ckTLtk29CQwODjA4xxVy/vE0/T7i8kVmSCMyMF6kAZ4qC/1WOwsYrkxSSNM6RxRJjc7ucKOTgfnRqBRj8LW0V0kyXl4FjmkmjiDKFRnBBP3cnrxknFA8LWzTNNcXl3cTExfvJCgOI23KOFGeepPPvW3GzPEjOhjZlBKEglT6ccUSSCKJ5GBIRSxCjJ49BRdgZkOhrbXs09tfXcMU0pme3VlKFz1PKkjPXAPWqr+E7acXBub28nlliSESuyhkVWDDBCjJyBycnii08X6be3y2cUd55xYKQ1uw2k9N3pW/RqhGdqGjxapo5068nmcHaTMNqvkHORgYB49KrDwvpwubydfNX7VbfZXQMNqptC/LxwcKv5VpXF9bWtxbwTS7ZblikS4J3EDJ6dOPWi+vrbTbOS7vJRFBGPmY8/y60ajMSTw/wD2fa3MsAutTnltRZiGWSNF8vsOgAAzWloWmHSNFtrNm3yIuZXznc5OWOe/JNN0nXbLWWlW185XiALLLEUOD0PPY4NadDuBgR+FIIoLaOLUL2NrRm+zSKybolbqv3eQffJ4FWxoFkNAbRsSG2ZSCxbLkk7t2fXPNalFFwML/hFraRLsXV5eXT3MaRu8rqCoQ5UrgDBB5/yag1bQr2e1sYYr67uGS+ileWRow0SKCCV+UDjjsc10lZ66zbzWdtd2kc93BcTCJWhjJ28kFmBxhQQcmi7EVY/DVtHHFm4uHmS8F407sC0kgGMHjGMHGBimx+GbW3uI5lmupIYJWuIbMuPLSQ55AxnucZOBk1uUUXGYPh7SpbW51HULi3+zzXs24Q7w/loMnqOMlizEDjmrUWiJbahLc215dQxzS+dLbqVMbv3PKkjPfBq8LjN61t5M3EYk83b+7OSRtz68ZxTNRv4dM0+e9uN3lQruYKMk+w96AKcPh+0gtrKBXmZLOZ5k3EHcW3ZDccj5z+lVIPCsFo8EiXl5L9kSRbaGR1KIGUgj7uT17nsK2rWWSa2SSa3e3kbrE7AlfxBIqai4HNaJ4YWC0sZNRluJ54bYxLBK6lIdww4G0c+nJPFTxeE7SNdkl1eTIsD28CyyAiBHGDt4644yc8YreoouwsZK+HrRYLiISTbZ7NbNjuGQiggEcdfmP+FN/wCEejSdpbe+vLYvAkMgiZRvCAhWyVJBGe1bFFFwMBNBntL2Ga1vZi0lz595K7KpkAXAXaqgHP4dzzxUup+G7fVLmeZ7q6g+0QiGZYSoDqCSOSpI69utbVQXt0ljYXF3IrMkETSsF6kKM8flRdgZ9x4cs7mC/ieScLfGMyFWGRsAAxx/sjOc1DeeFra8muGN5eRQ3MizS28TKEZ1xzypPYZ55xWnaXwvHYLBOiiNJA7rhWDDOAe5Hf60ahfx6dAksisweVIgF9WYKP50agR3ulQ313bXLyzRy26yLGY2AxvXaT06jtUenaOmn3VxdG5nubidVV5JtucLnH3QPXqea0qKQGPH4Z05J9SlKu/9oArKrNwoOSQvGRkkn60f8I+r6fJY3Oo3txC3l7fMZMoEYMMELzyOSc1sUU7gYGpaXNqniTT5XtSlrZEyNOZB+9PBVQo54YA8+latzYRXV1aXDs4e1cugUjBJUrz+Bq1RRcDDTwxBCkH2e8u4Jbd5GilQrlVc5ZDlSGXPPIJ96dceGbW7lE9xc3UlyiRrFOWXfFsOcr8uMk9cg5raoouBhyeF7YyiaG8u4JhcyXSyRsuQ7jDDlTxgdKfB4Zs7drNkknL2zySF3YMZTIMPvyOc+2KSTxVpUep/2f5sjyiQROyRMyI5OApIHXPFbVGoGZpmjDSiEhvruS2RSsdvKylUBOeDjccYwMngVDe+G7e9lv2e6uUjvlVZ4kK7SVAAYZUkHArSvLyCwtJbq6k8uCIbnbBOB9BzUyOrorqcqwyD7UXAytR8PWupSzyyyTJJKsa5Qj5fLYspAIPc85yKZD4btomV3urqaQXYvC8jLlpAu3nCjjB6Ctmii4GOPDVgZQ7+ZIPtj3mx9pUuwwRjHQdR796gl8KwSWAsBqF8tntKGDcjLszkDlSRjoD1wMZrfoouBn3+kx3zWsizzW81qxaKWLaSMjaR8wIIINVIPDFpBdxSie5aCGYzw2rOPKjkOeQMZ7kgZ4ya17ieO1tpbiZtsUSF3bGcKBkninRyLLGkiHKOAyn1BouBgatpOoXeq/bLILA4i8nzo70xs6dcFTEwGCTgg5/pSuvD2pXVzNKyIkc0iSyQx6iQjOmME/uPYZ//AFV1EVx5txPD5MyeSQN7rhXyM5U98dD71NRcVjkptA1O6ummu44rj93LGiyagfkWQENgiAE8HAyTio5PDmqyJHlgsqwG2aVNQwzxdlP7jHHrjPPWuxoouFjmG0W9IkVLC0jR7EWG1dQbCxjPTMPXnqalttN1K1vortLK0MkVotooa/bGwHIJ/c9f84roqKLjscwui6gr7xZ22ftxv/8Aj/b/AFhXGP8AU/d5+vvQmjagjhhZ22ftxv8Am/b/AFhBGP8AU/d5+vvXT0UXCxysOi6tbiWKFI0tJN5+yjUDsXeDnH7jIHJOM4zTpdG1N7fT0igggl09PLgnjv23bdoUggwEHOBnjtXUUUXFY5oaVqhuDcSW8EsrWhtGZ785Kk5zxB979Paq50DU0Nu1qiWrxWy2peHUSDIijjdmAjPuMda62ii4WOatNL1ixvGlt0iSBpGlNr9vJj3NnP8AywyBk5xnGasrb6qmqSagLGy82SFYSPt7bcKSR/yx68mtyii4zjR4Wvkggihiji8qGSAuuoHc8bsWIOYOOT1GDVpNEv0jKCztsGwWw5v2/wBWM8/6j73P09q6iii4rHGzeGNQljeONEgjlt0t5li1EjzVQYUnMB5xxxip5tAvp2vC1pbAXSxBtuoMCjR/ddT5OQR+VdXRRcLHNJpus77aS4WG5kt5jKjSX2OSpXHEA4wc/WmtouqXOqRXVyV2I7sgW+yYd4IJX9wCcA8AtjIrp6KLjsVTYq+lmwlmlkVofJaViC7AjBJPrVKfw9BJDYrDdXVvLZReTFPEwDlMAEHIIPQduta9FK4GEfClksVtHbXF1beTC0BaJxukRjlgxIPU85GOpq3LodrNocWku0vkRIiI4bDqVxtYHHXgdq0qKdwMSTw4Jnglk1W/a5gL7J9ybgHUKQPlwOF7DPJpbTwzZWQURy3B22ZsxuYfcLFs9OuT/wDWraoouBl3GhW1xpFrp3mzIlr5ZhkBBYFMbScjB6emKgh8M28IQrd3bSrdm8MrspYuV2sD8uMEe30rboouBgN4TtJzM91d3lxNJEsSzOyh4wrbgQVUZbIHJzV/TNIi017ibz57i4uWBlmmYFmwMAcAAAfTvWhRRcAooopAFFFFABRRRQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBGf9ev8Aun+YqSoz/r1/3T/MVJQBkeJYFudFkgc3Cq7ploITKRgg/Mg5K8ciuQlsru5jshdad5GnKkyLGllLIgcvxJ5QYMuR0znHpzx6NRTTsKxwt1Zamtrfw232mS4k0u3EcpiZGkCsd4Po+0/dznmoF0147FmihupbBruF7qzispIMIFYNhWYludu4D+7XoNFFwsccmn6amvaVeQ6TMlpskjjzbPmOQSAqxGMqOWIJ/SoPGVvcXV5KsVhI0iWytBPFbySuzbidqlTtTHcnk13FFFwsc94kilntdOaa2muLJZw15BCpLMu04JUclQ2CRWDqFlbu8p/si/ezNmV06OOFx5Mm5s5XqpJ2kE9vyrv6KEwscPd6JPeR3739rNNdxaTEI3+Y5nCvnbjgtnH5+9RvZta3mp3MukS3N5c2UTQgRP8AM2wiUFlHyn1GQT0HJrvKKLhY89srG7VL6OG1nFubuykiVLR4U4f5yqtk4GBk/jVldHlF29+LOcXY13KybWz5BYZI/wBjBPPSu5oouFjgdK027XVPMu/OTUFkn81hZSHzlIbGZd20r0wMcEAfXa0XSXsfB+20haDUp7T5mfIfzdp25z0wT+FdJRQ2FjzqOzaHT7h7SxvLQJpE66g06Moll2cYz95s7jkdjTBpK31ld/2dptxHCdLHm+bGy+bPkMu0H7zDB5GevvXolxBFdW0tvMu6KVCjrkjKkYI4p0caQxJFGMIihVHoBT5gscNeWbSrdHTbC5jtW0V440EDr+88wkrgj73U4/GlvfDECy6mIbCYoNNEsON5BuBu5Hq/C+/PvXdUUrhY4S7jugmsSXGlT3clwLQRK1uzrv8AL5cgA8Kc5x3471XudIWOLTreOG4bS44HRjNYSuROTy7RgqwyDweQOnuPQ6KLhY851HTpDDex31lfahM1hCmnyi3clSEw2QM7W3cnP/1j0XiDTft+n6PG9o0+y7g8xdhO1OjZ9BjrXSUUXCxwVvp86arbbbG8XVk1IvNdbWEbW+TwG6bduAF9q3vDGlpaQ3F3LbMl3LcTAvICG2eYSAM9B0P45rfoobCxyM9nqR1Hxc1nHLHLPDALeTBUORGQdrevb2Nc5aaTKui3qrZ35lkiiRLcWcke2fPEm4seRzk8DB7Zr1GinzBY8vfRnxZXGp6VeXE0V7KNRZY3YzbvuuuMZXjt/Wuj8R6brF1pO6Rob7yLmO4W3ihKF0XO5TljnqPTpXW0UcwWPP7+48Rava6ylqmofZWhBijntRC4O8bkXHLYXI6nPI71Tg0WWWxhhjgvTay6pbl7c2skIiXawdhlmOORk54Ir0yijmCx5vd6TqMGj39la2lyLGPVt3kiNmLQY/hGQXXOOAfx70+z0BrqXRLaeK8m0/z7pnV4HhESFVKrySQpYHGTzmvRaKOYLHmVvpty/iqJl0ee2i+0yQTKsMhQwsMZaQkgggnoABxUml6XJb6VpdsmmXcV7Bq8LXbGFsMoZ8MD02gEZP8AjXpNFHMFjzjT9P1BNbtC1jfLqy35e7vWz5Twc5AOcEEdB7UaRot1Zvol8tldx3ZvZEuGKv8ALESeoPQc/rXo9FHMFjj/ABRZ3k91qjW9vPIH0yNEMaE7mEpOBjqcc4qrrOgiC31u0sLCU28ltBJGiIzhpQzAleuWxjP613VFK4WOC1DR5R4gnj2SW8SmD7BLFZPMI1XGQpVgE5znI5HNLdaLc/2bqVzFaS/aJNTk83MbM723mZKquQSp4OARnnmu8oouFjhrfRlmSwg8uWaybUHkeP7JJAkamI5G1iSEJ/DJIphsJoUtYLuxupNHt9QuVaBY2bCZ/dNtHLIOfWu8oouFjzu80yS41NyIbq1tTFD/AGexsZJXhC9QMMNjbhn5hyK7P7cb+HUrezEkd1bloQZFwN+3Kkeo5FaNRw28NuHEMSR+Y5kfaMbmPUn1NFwPP7bT5xAgsdOvoJxp06ai0sbjzpCnygZ++27JBHY10MOlLaeBbi3t7VluZ7BjImCXeUx85zznPaujoouFjg57K7nsNU22tyRNBpwTEbAttI3Y75Hf0p15pN3atq1pplo6Qi6s5LVdjGPdkbmHsCBnFd1RRcLHOaNppl0S/wBM1CGRbh5JEuJ2U4nLdJFJ4PGPpjFc8sGpapZzXdzDLKbSSKwnjhJLzRRtmbGOpY46ehr0GaJJ4ZIZM7HUq2GKnB9xyKjs7O3sLSO1tYhFDGMKo7d6LhY4kWc8cU1xZ2V1FpcOpW88NuY23hF/1jKh5wSc4+tSyWU2qZ8yyu1t59bWRlkjZCYvJwSR1Cnp+OK7iii4WOb8RWahdKjNpLNpMEhFxbwIW+ULhPlHJUHqKwG07VodOhms7W4UTTXFpFC6tvit5fuFu4CkZ56ZFeh0UXCx51NpWotpepwtbXZNlElla/Icyp5+7cuOvyhBx6V02iacuma5q0NvbvDZMsDRDB2FsMGwT1PAzW/RRcLHHaDc3OgGfSrnSr+aZ7xnWeGHdHIrEfOWzge/4Vk2tvfxXFhYNp19uttYaaSYQt5ewnqG9K9HoouFjyoaJcXFrqsMWl3cxMJljubmB45t+8HYRkhzjPIqa908OiH+x9SkszYMljFHG+YLjJyWGcg7ucnqMdcV6fRT5gseb6hoN9eyXbX1pczXEWlRFHUMQ06gZwRwzdfXqa2PDemT6d4hBWC4jguNNjknaTcQ0+4ZyT/F14rsKKVwscXFasL3U/NsLo62805tbsxsUClT5ZD/AHQoGBjPBx+FC30+X7HKun6dfW7f2VNHfCWNx50xX5QAfvNnccjsa9DoouFjhZNCaNby2gsZfKuNF3OpViHuQcrkn+PP41n6namawjisdInhaKzUwutlKZDLuJYL0CYOST1PbNelUU+YLHE6hp91eX14slrcNDPqNkW2owDJ5ahzkdhyCe1Q3+lXVvZXlpaWso09NTSQwrEzhojGM4UEFl3dge3tXeUUrhY4W30MXFxo1vLHNc6eJrl2VrZ4UjUgFVKkkhdwyMnmuysblbyzjnSGaFWziOZNjLg45HbpViihu4wooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARxfdb/eb+ZqSo4vut/vN/M1JQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/rpPoP61LQAUUUUARn/Xr/ALp/mKkqM/69f90/zFSUANdxGhZulR+bMekBx7sKS46xf9dBU9AEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UeZN/zw/8fFTUUAQ+ZN/zw/8AHxR5k3/PD/x8VNRQBD5k3/PD/wAfFHmTf88P/HxU1FAEPmTf88P/AB8UGZ15kiKr6g5xU1Mm/wBTJ/umgB/WimQ/6lP90U+gCOL7rf7zfzNSVHF91v8Aeb+ZqSgAooooAhX/AF8n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/8AXSfQf1qWoo/9dJ9B/WpaACiiigCM/wCvX/dP8xUlRn/Xr/un+YqSgCC46xf9dBU9QXHWL/roKnoAydd8RWHh23gkvTM8lxIIbe3t4jJLM+M7VUcngfQVJoutR61byyJZ31o8MnlyQ3kBidTgH6EYI5BIrm/GE6aP4u8NeIL5X/sq1W5t55gpZbZ5VTZI2OQPlZSeg3e9UPFPinSdTsdH1bT73ztN07Xbc3d3GreUqbXBO/GGUF1yRkDvQB6LVO61O0sr6xsp5dtxfSNHbrtJ3sqFyMjp8qk815ZdX2na7H43nGtpZafPqNl5N3Mj+Q4WGP5Wxg+UxUgnIBBznnnKC+HL0+F9R1HStOstHtNTu7O4uIpGazkHksUeNmxiMv07AgigD3SivD9bltSniZ7qab/hNxqbDRlRm87ytyeQIR0MZX72OPvZrQ8UaPa6ldfEa9vVke606xhntGWVwIJRbFt6AHAOVHPXAoA9gorznw/ptto3xA0r7EJE/tLQZJrwvIzmeVZIsSMSSS3ztz716NQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ3F1BaRh7iVY0LBQWOBk9BSz3ENtA088ixxKMl2OABTL2yg1C0ktrmMPE4wQa5238M30twlvqV79o0y2OYIu7+m/wBcUwOoR1kRXQgqwyCO4pJv9TJ/un+VOACqFAAA4AFNm/1Mn+6f5UgEh/1Cf7oqSo4f9Qn+6KkoAji+63+838zUlRxfdb/eb+ZqSgAooooAhX/XyfUfyFTVCv8Ar5PqP5CpqACiiigAooooAKKKKAIo/wDXSfQf1qWoo/8AXSfQf1qWgAooooAjP+vX/dP8xUlRn/Xr/un+YqSgCC46xf8AXQVPUNwDtVgMlWBxR9qh7sQfQg0ATUm1du3A24xjHFRfaof7/wCho+1Q/wB/9DQBNgEYI4pNqldpUbfTHFRfaof7/wCho+1Q/wB/9DQBLgZzgZHelqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqKh+1Q/3/ANDR9qh/v/oaAJqKh+1Q/wB/9DR9qh/v/oaAJqKh+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqKh+1Q/3/ANDR9qh/v/oaAJqKh+1Q/wB/9DR9qh/v/oaAJqKh+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqKh+1Q/3/ANDR9qh/v/oaAJqKh+1Q/wB/9DR9qh/v/oaAJqKh+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqKh+1Q/3/ANDR9qh/v/oaAJqKh+1Q/wB/9DR9qh/v/oaAJqKh+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmpk3+pk/wB0/wAqZ9qh/v8A6GmyXCPGyR5ZmGOlAEkP+oT/AHRUlNjXbGq+gxTqAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/9dJ9B/Wpaij/ANdJ9B/WpaACiiigCM/69f8AdP8AMVJUZ/16/wC6f5ipKADrTPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0pRGoPSnUUAFFFFAEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/16/wC6f5ipKjP+vX/dP8xUlACEhVLMQABkk9qz9O1/R9Ylmi0zVbG9kh/1qW1wkhT6hScVzPxdN2vwv1k2nm/dj87yvv8Ak+YvmY/4DnPtmqOqav4W0HwnqGoeDV0Y6rb6U0tsLQRmQQjHzEDkqCQTnuKAPRaCQASTgCvE4fEmqab/AGra2PiubXIpPC0+ptOzI7WlwqnaVZQNoOeFPI4qWwuPEBm0y0uPEup3a694akvJAfLBhmCowMWF44OMc5ySecYAPZIpo54llhkSSNxlXRgQR7EVVu9XsLG/sbG5uUiur5mW2jOcyFRuYD6CvGNFv0074Y+FrK28Ray11qbEJHa3UEYiKoS0ZldcRIOvdifXtoeFfFes6mvw+F1ftK9xeX9vdSKwYXCxo2wkgc9uR1696APZKK8S8Pa14jS28Ja7c+Ir66GpazJp01nKE8ryt0gB4XO4FM5J9u1SeDPEXi3XfEdnqEl5Jtl1CaC9spbyARRxruARIf8AWB1wDnnIB7UAe01SGsaYbS5uxqNoba1dkuJvPXZCy/eDtnCkdwelcV8Kjq2q6INf1bXL29eZ54I7ZyoijVZSAcAZLfKeSehxiuPm1Wx074d/EjSru6ii1BtXvVS2ZwJJPNK7Cq9SDnj6GgD1y78U+HtPuEt73XdMtppEDpHNdxozKehAJyQfWrp1CyF1Bam8txcToZIYvNXfIo6sozkgZHI9a8P8VpqVh4n1h7XRNP1RrXwzb/aIrwbtigsCyLjkjk4yOB+FauijT9C8RfDpDqsM1mmiXOy7kcIr5CEdTx1wB7UAeyUVHBPDdQrNbyxyxOMq8bBlb6EVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/16/wC6f5ipKjP+vX/dP8xUlACMoZSrAFSMEHoaz9P8P6NpLzPp2k2Nm8/+ta3t0jL/AFwOat3d3b2Nq9zdSrFCmNzt0GTgfqaisNUsdTRnsrqKcIcNsbJX6jtQBXtPDmh2FtdW1no+n28F2CtxFFbIqzAgghwBhhgkc+tWI9L0+KW2ljsLVJLWLyYHWFQYo+PkU4+VeBwOOKt1C13Al5HaM+J5ELqu08qMZOencUAZjeEfDbW8lu3h/SzDJL57xm0j2tJ/eIxjPvVqHQ9Jt2t2g0uyiNs7yQFLdF8pn++y4Hyk9yOtXJJo4igkkRC7bE3MBub0HqeDT6AKCaJpMUFvBHpdkkVtL58Ea26BYpMk71GPlbJPI55NNXw/oyasdWXSbEaiet2LdPNPb7+M1o1VXUrN7WG5W5jMM7hInzw7E4AH40APs7G0062FtY2sFtApJEUEYRQSck4HHJJP41VuPD+i3Wpx6ncaRYTX8eNl1Jbo0q46YYjPHakXX9Je+NkL+D7SHMfllsHcDjHPfNXYLmG5EhgkWQRuY32n7rDqPrQAz7BZ/bJLz7JB9qljEUk3lje6DopbGSOTxWdN4R8NXFtb203h7SZILcMIInsoysQJyQoK4GTycVefUrddTTTv3jXDJ5hCxkqi84LNjAzg4zVugCG0s7XT7SO1sraG2toxhIYUCIg9ABwKmpks0cEZkmkSNAQCzsAMk4HJ9zUUV7BNe3FojkzW4QyLg8Bs4579DQBYooooAKKKKACimRzRylxHIjlG2PtYHa3XB9DyKZPdwW8sEUr7XnfZGNpO44Jxx04B60ATUUUUAFFFFABRRUF5eQafatc3LlIlKqSATyxCjp7kUAT0UUjusaM7kBVGST2FAC0VQsda0zU3KWV9DM4GSit82PXHXFX6ACiq99e2+nWb3d05SFMbmAJxkgDge5FWKACiiojcQi6FqZF89kMgTvtBAJ/MigCWiooLmG5EhgkVxG7Rvjsw4Ipk19bwXltaSORNc7vKXB52jJ57cUAWKKKgkvLaK7htZJkW4mDGOMnlgOTigCeiqh1SxCbzdRhfP+zZJ/5aZxt+uaZdaxp1kszXN5FEIGVJNx6MRkD3JHOKAL1FVYtRs57Br6K5je1VSxlVsgAdc/SoLPXtK1AyC1vopPLTe+Djavqc9qANGisyPxFo80M8seowNHBzIwb7ozjP0z3qew1Ww1NXNldxT7PvBGyV+o6iiwFyiobq7gsbZ7m6lWKFBlnY8DtUqsroHUhlYZBHQigBaKKKACiioIby2uLie3imR5rcgSop5QkZGaAJ6Kz49d0qa7ktY7+3aeMEsgf06/XHeix1zS9SlMVnfQzSAZ2K3zY9cUWA0KKbLLHDE8srqkaAszscBQO5NVLDV9P1TzBY3cU5j+8EPI/D096ALtFFFABRUE95BbTW8MrEPcOUjGCckAn8OAanoAKKo32tabpkiR3t7DA78qrtzj1x6e9F7rWm6ckTXd7DEJRmPLfeHqPb3osBeorMn8Q6RazJDPqNvG7qHXL8FT0OemDWkrBlDKQVIyCO9AC0UUUAFFFFABRRRQAUUUUAFFNkkSKNpJHVEQFmZjgADqSaVWV1DKQVIyCDwRQAtFFFABRTZJFhieVzhEUsxxnAFNt547q3iuIW3RSoHRsEZBGQcGgCSimRzRzBjFIjhWKNtYHDDqD7in0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARxfdb/eb+ZqSo4vut/vN/M1JQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/rpPoP61LQAUUUUARn/Xr/ALp/mKkqM/69f90/zFSUAYPjPP8Awil3txndFjP/AF1Wub1C41K2utWluJljvxJBHI0AMSra5P7xT8x6nBOCVr0KimmKx5/Pf3NvptsW1MXFo9+yk2+oHdt8vIQzsF6Hnk85AzxU1lPc21tbJJrLMX065kkuBcGdUfcoBzk5K57e+OtdVqGkxag9tKJpbea2ZjFJFtOMjBGGBBGPan6ZpkGlWzQQF23yNK7uQWdm6k4AH5AU7hY4MzRXEFoLq+udtrqESTXaX7yQkNGfmVz93kD/AHdx9a2Le1vdTh12e21O98+K5eO0VZzsG0Kw4zg5zjntXYbV27dox6YqK7tzdWskCzzQFxjzISA6/QkGi4WMbwzfT6x9r1VzKlvMyRwQseECr8xH1YsP+A1z9hdRPouhaOrZ1C31BPOt8HfGEcsxI7DHeu3sbKDTrKG0tl2wxLtUd/qfc9anwM5xz60rgeeEXJkmW4kiTSG12TznEZ8xGDgrls4Ck4GeMZ962/DmqWEFzqdlLdwpcvqk+yJnAZstxgV1NFFwscRrKXNtqviC8spbkXMdpAVCOSACWDHb0OFBI9Dk1Wnv5ks9UTStWu7myVbYrdPKXaOVpVDKrHrlcEjtnFegUAAdBii4WOZ8U2KQeEGiNxdMkEkTmRpmZyPMGSx6nAJPtgegrGu4g1xr95Y6ldAWtnBJDJDcEiQhWILH+Pp39TXf9aAABgDAFCYWOEuL/UJvEUqvfx2kqzQm3ilu3jR4zt4EYUh92WBOcj2xWpr90qa5a29/fz2OmtbuwlilMW+UEfKWHouSB3NdNgEg4GR0oIBGCM0XA8/1HUplmvHj1S8W+jeEadbK52zxkLg7f492Wznp+lWpJLsS32oDULzdb6wkCQ+cfL8ssgKlf+BH8q7fAznHNFFwsee+fb6W+rRSXl0tzJqWwR/bTFtjbaRI55Kr2LAZ6CrWianeXC6aj3jyquqTQ71kZhJGI2YAk8sOeCfQV25VSSSByMHilouFjgdLudRgi0S5ivbu5nvra4Lxzyl1ZkTKYB6cjrVe0v75tHvbldW3y/2fI0sX2x3lSQEfNsKjy8EkYB9OuM16NSYAJIHJ607hY53VFudK8ITvb3V3JNhWknZi8iglQ7L6YGTgYA61l3+o6fFaW0Flq11PHLM+biTUHRIyIwcNIAW9CFHcn6V29JtGMYGKVwOH0qa81tNEiuNQvIxJZztI0EpQuVdVBJ9f8+tS3t3Le/DCK5uZW8xlh3yD73EqjP14zXaUUXCx59PqN1DbaoNM1C5udOSe3U3TzMxjBz5m2TBOB8uSM4z0rc0h5X8P6lvvYruMGTymjuWn2DYDtLkAnBz+ddKAAMAYpjxq8LRHKqylTsYqQD6Ecj6ii4HFWN1bagvheHT2Wa+tI0ad0GRFGIsMrN2ycDFVtN1K+aaze2v7u61SRZze2crEpGQpx8vRMNtAxjOa6/8AsO0/57ah/wCDCf8A+Lo/sOzznzb/ACf+ohP/APF07oLHG3V1a3Hgy6kXVLm71B4ImuIJZidj+Yu75TwnPH0qS61LUUtnS7uZYbr7eFvx9oaNIUIJjCsoJRDx8wGSc5Ndd/YVmCSJb/nr/wATCf8A+LoOh2hGDLf/APgwn/8Ai6LoLHOaet3e3+m2k2rSSW/lXD77S7ZvMVZFChnwCSM4z3x7mtHUobyfxhbLZXi2sgsJCXaESZHmJxgke3PtWkNDtAMCW/8A/BhP/wDF0f2Haf8APbUP/BhP/wDF0XA5PTryXS7u3ku7wpbDVbxLqX7iO207Sw6ckEgdqhe7iuv+EfuL/UJ4YWmvc3HmmNgNxCjd1HYfpXZHQ7Q9Zb//AMGE/wD8XQdDsyMGW/I/7CE//wAXRdBYoeGdUV9Ptba5uZJJpmlNs02fMmhVjhj74x9RzWDrD3tzq19rdtaiWHS5kRJPN2soiyZRtxyDvIzkdK7G30i0t7lLhfPeVFKoZriSXbnGcbicZwKSTR7WWV5GlvgzEsQt9Mo59AHwB7Ci6uBxGpWkmoavqOm2uTBh9WiZf43MShcf8DJNWbeS2vNHj1W6vzp893qElzaztHvVCBsCtnjGFPUj2rq/7DtP+e2of+DCf/4ug6FZkYMt+Qe39oT/APxdFwsZEOoS6l4H1aaaKJSsVygkhUhJgFPzqD2Jz+Oay/tDXvgy4tI9Vh1GVbeF/s0CBXjjVl3jgnPHH/666v8AsO0/566h/wCDCf8A+Lo/sO0/57ah/wCDCf8A+LougMDxFq2k6j4Wv49OmildIIz+7Q/Im9cAnHH+719qfZ3f2DxDql5r1zFFcwQRopijKxtAW4YDJJO44PpW4NCsx0lvx/3EJ/8A4uhtCsnikidruSOQbXWS8lcEZBxhmPpj6ZHei6AzPFBlvrjT9Jt4FuTI5uZojJsDRpjhjg8FiO3aufl1PGh2Gkz6hJZanBM9m8i3BjSNUxl2wRu+XbjPUn613l3YxXuzzXuF2Zx5NxJF19djDPTvVb+w7T/ntqH/AIMJ/wD4uhMDlNT1oWdtq9rFqcxlLWps2MpLPGVTLKe4OGJPv71JeSagLDxDqEN7eGW3u2gjRZW2Rx/JuIUZ5AY844xkV0/9h2mc+bf5/wCwhP8A/F0f2Haf89tQ/wDBhP8A/F0XQWMvw9eNBY6jczahDdWcWJVMd01w0YCZYFmUHtnHbJrn7KPVLR0vJLdYZNYt5o/NWbO6Zw0kZIwNp/hHJ/Cu0GhWYGBLfgf9hCf/AOLo/sO0/wCe2of+DCf/AOLougsYumappJ8O2+nRMi3kdo6GDyzvjdUO/Ix8vOeTjOaoaQ80d94fk1WaJLeHTjJZtFGRu/dgMrkk8heeOD+ldT/YVnnPm3+T/wBRCf8A+LoOh2pBxNqAPr/aE/8A8XRdAZ3iSZL/AMOQ3duPtNj50U8yopPmQhgW4/U/Q1l6h4hvJ11YaXLazpHaLJHcWkZLxgvjaxyRkKWPausbTbY2UNmolighACLDM8ZAAwBlSCR9TUA0KzHSW/H/AHEJ/wD4ukmgOSl1GeKHUF0vU7y60xVgMt2zmR4NzYk2MRk/Jgn09qZcanPDaX4s9SurjTI7y3RJ2mO5g3+sRZT0H3eSRj15rsBodmOkt+P+4hP/APF1HP4etJoEjWa8QpKsyObhpSjLnBAkLDueMc07oLHN2JZf7IuJL77Rv1OQLuu/PEYMbhIy+SM8jp607wteX91qcD3GooZmEou7WW6dpAQeMRFQEweOD0NdFb+H7SGGZWlupJJpRNJKJjE7MBgcx7eAO3SpP7Cs8582/wAnv/aE/wD8XRdBY5281AaRqmvNM9rDdzbJIHukJSaIJjYuCOQQR16npTtP1O3stZuL3W/LtWvLK3eBnUhQoT94i56fMfu9eldAdCsz1lvzj/qIT/8AxdB0KzPWW/P/AHEJ/wD4ui6A5XVZbuSfXZdM8r7K9lbearQkv5RV+UBIwQuTgj8q6rSbvTzbw2FnciY29vER6lCvyn8QKP7DtP8AntqH/gwn/wDi6ns9NtrGWSWLzWkkAVnmmeVsDOBliTjJJ/Gk2Bx1jqN0+oWJ/tC6fVpL547uxZyY44stk7OgAAUg98/ls+FFlbSDqNxdXdzLK0oKvKWChXYAKvTPH1ro8DOcc0UNhY86sNYuJHu2gvpmjk0ueUI920zxuvRicAI3P3R0q3BDqT7Le21O9aa60gXamSYtiYMpGPQHOCPSu6AA6Cobu3N1ayQLPNAXGPMhIDr9CQadwsY3hm+n1j7XqrmVLeZkjghY8IFX5iPqxYf8BrmI7i/j0HSryXUbox3kzi6llu3jVApYIu4A7ASOTjnHUV31jZQadZQ2lsu2GJdqjv8AU+561YIBGCMilcDibaO7vptNs5dXnaNrW4bzrO6Y+ZtcBctgbiM4zjnHuaisLrUoLfTbmK8urq5vtOuHMczl18xFUptXoDk4967uii4WPOBO95ps0Npqd7eiXSpZb5XlY+VKBlQP7pLblK9xRc3r7bK3ttXMVmbDfFPJfvGvnZ+YFgp3FePkPSvR8AZwOtJtXGNox1xincLHPa4109hosX2t4ZLi7ijnktnK7gY23YPoe34GsZbi/HiKS3fURBJBdxxwxXF66+ZDwB8m0iQsM/MTnPpjnu6TAyDjkd6VwPOtPvLq7nklk1WVZoY7ppFN9jznGdm2ENlQACcECrLanJHJo882oyzZtbUPax3TRy72wd+3pKDnkHmuhtPC9paS2pFxcSRWjl4IXKbUJzzkKGOMnGSa28AkHAyOlNsLHncYFuj2Vtqd3FcSa4YJVW5beIyzc4PqOd3c/StTUGv7HVRokNxdtHqLRGCYyktCqf67DE5ztUH/AIEa7DABJwMnqapLpcX9rtqUks0s2zZGjsCkQOM7RjgnAyeaLhYns7y3v7Zbi1lEkLEgMAeSCQf1BqegDHSipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v8Aeb+ZqSo4vut/vN/M1JQAUUUUAQr/AK+T6j+QqaoV/wBfJ9R/IVNQAUUUUAFFFFABRRRQBFH/AK6T6D+tS1FH/rpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/3T/MVJQAjMEUsxwBUX2gHpFKR6haS458sdi4zU9AEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zR9o/wCmMv8A3zU1FAEP2j/pjL/3zQLhcjcjpnuwwKmpkwzA+f7poAfRTITmFCf7op9AEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/wBev+6f5ipKjP8Ar1/3T/MVJQBBcdYv+ugqeoLjrF/10FT0AFZWh63Hriag0cLRfY76aybcc7jGcFh7GuS+IE2nr4l8OReJH2eGnFx53mEiBrjC+WJT0xjfjPGa5WzvtJsfA15GtpBNpV14nnhikvJpI7eGM5KvKepTA4B4JK5xQB7ZVTUrySwsjcRWVxeMHRfJtwpc5YAnkgYGcnnoDXjGlql54at9MFwH09PGSW0X2TzIE8log5VMsWVCXbHPQ8cVf1S0h0XT/Gmk6cht7C31bSpIYUJ2xmR4C+PQE849zQB7HWXpWtx6rf6vapC0babdC2dmOQ5MaPken3wPwryXxLE154y16DVdV0/TNSE8Z0m5vWlWSOLauxrfBCn5924DJJyDxWrewTSf8JxPaNnVdH1i31WKJT8zBIIjjHXDqsij1/CgD1mivG73U7K/0mTxDqFtBLZ+IdWEdtLqErxW1vbRIyRtKARkNtdgp4JcdMCqelRpqHh7RNMknMlini+S2j+z+ZAjQGGVgqgsWCHccAk/KcUAe4VTutTtLK+sbKeXbcX0jR267Sd7KhcjI6fKpPNeVXOn6dYad4r0ManBo+mW2t27W63AZrbLQxyNFJgjETHOeQOffBz2Xw7fxeENU1LSrCx0e31G8tLiVZWa0ZfLk2Mjtj92z8r0APFAHtd1M1tZzzpBJO0cbOIYsb5CBnauSBk9Bk0trM1zaQzvDJA0kauYpcb4yRna2CRkdDg15edJsrub4iavMrTXVo8y2jM5Kw5skyyDoCQ2CepAFYutbZr3QYtdnsItIfw/AbR9TaRYPP8A+WhDKQBKBsxnt05zQB7fWfrerR6LpUt88bSlWSNIlODI7uERR9WYCvNrLw5a654kj0/Xbg6vHF4WtT5vmOEmYyTASlc8tjoTyMmr/hi5m1zRfAFhPI0pjsxqV0zHJYRIEjDH1Lure/lmgD0qq2oXT2Wn3F1HazXbxIWWCAAvIR2XJAz+NeMPqdnP4603ULGOysdRHiA2s8AaWW9aMsyMZWLYRG6hMEcrg8Yq5JpNoPAXj/W2V5NRF1qsMc7uSYoxK3yJ/dGRnjqaAPYkYvGrFWQsAdrdR7GnV4d8R9QspZtWjaOys9T06whmtbm5aWS4mbZvBtkVgEC4wz885yMCvTNS07VvENhcWFw9iuk3toY2ZQ4nUtH94c7eH5+goA19b1NNF0HUNVkjaVLK2kuGRTgsEUsQPyqlYeI4r7Xv7KW3dH/s6HUN5YY2yMyhfqNn615ol7feLfDXiPULxJPO0Xw9caVJHg/NelG+0ED/AIBGB/vGrs93BJf6pJFOjCfwPG0DK3+sCmbJU98bl6eooA9ZoryCw8J6Q2u+DoXgleLVdGmk1BGuJCLtkWEqZPm+bBduvt6Vr+CpNLTR/Ddvf3k63kF/f22mx+Y+JBHJKu1scELGON3pQB2fhzXI/EeiR6nFC0KPLNHsc5IMcjRk/iUz+NWbrU7SyvrGynl23F9I0duu0neyoXIyOnyqTzXjsOo6ZH4I0PTNSgsGjk1PUY5Z9SlYW1q6zSNtkRSNzkMNqnHrmqljb6VNpPgu+8QeRJptpqWoWU11cKyRrEBMIlbeSVG4AAMcjABNAHvNFeHyxPe+MNTXUNV03T9cXWFbT5rlpRcfZ96+UIQDtMbLwQBg5bNacY0b/hYs1qzWGuyaneTxSfM63tiCjbkdejQDBA+6BuBG7rQB6lpep2ms6Zb6jYy+ba3Cb4n2ldw9cHmrdcB8II9Jg8DWlvYiBNQiRU1GJD+8SYZGHHY8Gu/oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmTf6mT/dP8qfTJv8AUyf7p/lQAkP+oT/dFSVHD/qE/wB0VJQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf8ArpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/wB0/wAxUlAEFx1i/wCugqeoLnhUbGdrAmpBNERnzF/OgBxAYYIBHoaCARggEehpvnR/89E/76FHnR/89E/76FAD6KZ50f8Az0T/AL6FHnR/89E/76FADiASCQCR09qMDJOBk96b50f/AD0T/voUedH/AM9E/wC+hQA4gEYIyPelpnnR/wDPRP8AvoUedH/z0T/voUAPIBBBGQe1IVUrtIBHpim+dH/z0T/voUedH/z0T/voUAPpCAwwQCPem+dH/wA9E/76FHnR/wDPRP8AvoUAPqnHplvFq9xqgDG6nhjgYlsgIhYgAduXYn149Ks+dH/z0T/voUedH/z0T/voUAOwASccnrS0zzo/+eif99Cjzo/+eif99CgB2BnOBn1paZ50f/PRP++hR50f/PRP++hQA+kCqMYUDAwOOlN86P8A56J/30KPOj/56J/30KAH0YBxx0pnnR/89E/76FHnR/8APRP++hQA7av90cnPTvQQGGCAR6Gm+dH/AM9E/wC+hR50f/PRP++hQA7AJBIGR0NGBu3YGemab50f/PRP++hR50f/AD0T/voUAOAAJIAGeT70tM86P/non/fQo86P/non/fQoAfRTPOj/AOeif99Cjzo/+eif99CgB9FM86P/AJ6J/wB9Cjzo/wDnon/fQoAfRTPOj/56J/30KPOj/wCeif8AfQoAfRTPOj/56J/30KPOj/56J/30KAH0Uzzo/wDnon/fQo86P/non/fQoAfRTPOj/wCeif8AfQo86P8A56J/30KAH0Uzzo/+eif99Cjzo/8Anon/AH0KAH0Uzzo/+eif99Cjzo/+eif99CgB9FM86P8A56J/30KPOj/56J/30KAH0Uzzo/8Anon/AH0KPOj/AOeif99CgB9FM86P/non/fQo86P/AJ6J/wB9CgB9FM86P/non/fQo86P/non/fQoAfRTPOj/AOeif99Cjzo/+eif99CgB9FM86P/AJ6J/wB9Cjzo/wDnon/fQoAfRTPOj/56J/30KPOj/wCeif8AfQoAfRTPOj/56J/30KPOj/56J/30KAH0Uzzo/wDnon/fQo86P/non/fQoAfRTPOj/wCeif8AfQo86P8A56J/30KAH0Uzzo/+eif99Cjzo/8Anon/AH0KAH0Uzzo/+eif99Cjzo/+eif99CgB9FM86P8A56J/30KPOj/56J/30KAH0Uzzo/8Anon/AH0KPOj/AOeif99CgB9FM86P/non/fQo86P/AJ6J/wB9CgB9FM86P/non/fQo86P/non/fQoAfRTPOj/AOeif99Cjzo/+eif99CgB9FM86P/AJ6J/wB9Cjzo/wDnon/fQoAfRTPOj/56J/30KPOj/wCeif8AfQoAfRTPOj/56J/30KPOj/56J/30KAH0Uzzo/wDnon/fQo86P/non/fQoAfRTPOj/wCeif8AfQo86P8A56J/30KAH0Uzzo/+eif99Cjzo/8Anon/AH0KAH0Uzzo/+eif99Cjzo/+eif99CgB9FM86P8A56J/30KPOj/56J/30KAH0Uzzo/8Anon/AH0KPOj/AOeif99CgB9Mm/1Mn+6f5UedH/z0T/voVHNNH5TAMGJGAAc0APh/1Cf7oqSmRDbEoPYU+gCOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/wDXSfQf1qWgAooooAjP+vX/AHT/ADFSVGf9ev8Aun+YqSgBCARg1EbaMn7o/KpqKAIfs0f90flR9mj/ALo/KpqKAIfs0f8AdH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/wC6PyqaigCH7NH/AHR+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP8Auj8qmooAh+zR/wB0flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flR9mj/ALo/KpqKAIfs0f8AdH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/wC6PyqaigCH7NH/AHR+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP8Auj8qmooAh+zR/wB0flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flR9mj/ALo/KpqKAIfs0f8AdH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/wC6PyqaigCH7NH/AHR+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP8Auj8qmooAh+zR/wB0flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flR9mj/ALo/KpqKAIfs0f8AdH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/wC6PyqaigCH7NH/AHR+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flR9mj/uj8qmooAh+zR/3R+VH2aP8Auj8qmooAh+zR/wB0flR9mj/uj8qmooAh+zR/3R+VH2aP+6PyqaigCH7NH/dH5UfZo/7o/KpqKAIfs0f90flSrAinIAqWigAooooAji+63+838zUlRxfdb/eb+ZqSgAooooAhX/XyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/10n0H9alqKP8A10n0H9aloAKKKKAIz/r1/wB0/wAxUlRn/Xr/ALp/mKkoAQkKpZiAAMkntWfp2v6PrEs0WmarY3skP+tS2uEkKfUKTiuZ+Lpu1+F+sm0837sfneV9/wAnzF8zH/Ac59s1R1TV/C2g+E9Q1DwaujHVbfSmlthaCMyCEY+YgclQSCc9xQB6LQSACScAV4nD4k1TTf7VtbHxXNrkUnhafU2nZkdrS4VTtKsoG0HPCnkcVLYXHiAzaZaXHiXU7tde8NSXkgPlgwzBUYGLC8cHGOc5JPOMAHskU0c8SywyJJG4yrowII9iKq3er2Fjf2Njc3KRXV8zLbRnOZCo3MB9BXjGi36ad8MfC1lbeItZa61NiEjtbqCMRFUJaMyuuIkHXuxPr20PCvivWdTX4fC6v2le4vL+3upFYMLhY0bYSQOe3I69e9AHslFeJeHta8RpbeEtdufEV9dDUtZk06azlCeV5W6QA8LncCmck+3apPBniLxbrviOz1CS8k2y6hNBe2Ut5AIo413AIkP+sDrgHPOQD2oA9porz34VHVtV0Qa/q2uXt68zzwR2zlRFGqykA4AyW+U8k9DjFcUPE2rxM2qr4supb+LxO2nxaP5kZSWAy4KlMbicHhieB0oA93pGYKpZiAoGST0FeHar4v1qK61zWF8RSQ6lp+vDT7TQAUCTwb1UZQjczMCzbgexx7a08GteIrvx40viPU4bXS5JY7WztSqhiYM4YlSWXpgcc59aAPWopY5ollidZI3G5XU5DD1BpJZY4IXlldUjRSzMxwFA6k1xvwohji+HOkGPU577zLeN2Esiv5B2KDEu0DCjHQ5PPWtrxWM6CzMpaCOeGS4UDOYVkUv+G0En2BoAgPi6EyqItL1GWJhuV1RAzr/eWMsHYe4WtuzvLe/tI7q1kEkMgyrD8jx2OeMVz9/o9ve+I7CeAwL5ri9kn275H8rYEVGzhVIJz6/jVvw6VkudZngwbOW+JhI6MQiK7D2LhvxBpiNyiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCh/bmk/2X/an9qWX9n52/a/tCeVndtxvzjO7jr14q/XzaE8S/8KHVvP0r+wftf+r8qT7Tn7Z/e3bfv+3T3rqfEniLxbdeO9es9KvZLaTSntxZ25u4IIXVgGZpVk+aQNkgbSMcd6APaazrXXdLvTeeRexH7HcG1uC2VCSjHy5OMnkdPWvJfEfjC/tvGy3OmatqXk22tQWFzbXFxCkDBtoeOOILvfqfnJGO2etZOvwGXRfFjfb7i1WHxkjS+U6qAjGIBmyD0PIPTI70Ae6Jq1i+syaQtwDfxwC4eHByIycBs4x1Bq7Xi+s6beP481X+zvEmoQvZeF0mW7jaNpLhkdyu9tuCMjJ2gZrc8R+J9XT4CQ+Ire7aHVXs7OUzoAPnaSIMcdOcnj3oA9MorybWm1LTPFGm+GL/AMbX9hZSWE1/JqkskUck84YDywSu1UUfNtHY4zVfwz451S4uPA13r2pLa29/Y3v2h5SIo52iYBHOcAEqM9utAHrzzRRyRpJKivIcIrMAWOM4HrxT6+fra4vPEdp8O9U1PxHqFv8Aabu+ie7jmRPLKmTYwLKQGI+XnsOneta18ReLtU8cag1teSp9h1z7H9jkvII4PswYDBib52dhkhgevAoA9rrM1PXLfTJFhMU9zcsu/wAmBQWCf3mJIVV9yRWnXMwWdre6p4gsNQUNJNNFOFJx5kIRNv1UOrgj6+tNAXtN8R22oTx27289rNKCYhMFKygddjoSrY9M59q2K4eOz+zeHrBd8B1DUdRgvIY4I9iRtuQvsXrtCK2T3yfWu4oYkFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/16/wC6f5ipKjP+vX/dP8xUlACMoZSrAFSMEHoaz9P8P6NpLzPp2k2Nm8/+ta3t0jL/AFwOavSSrEMt+AqmdVtwSC8QPvIKpQk9kJyS3I7Tw5odhbXVtZ6Pp9vBdgrcRRWyKswIIIcAYYYJHPrViPS9PiltpY7C1SS1i8mB1hUGKPj5FOPlXgcDjio/7Wt/+ekX/f0Uf2tb/wDPSL/v6Kfsp9hc8e5Vbwj4ba3kt28P6WYZJfPeM2ke1pP7xGMZ96tQ6HpNu1u0Gl2URtneSApbovlM/wB9lwPlJ7kdaP7Wt/8AnpF/39FH9rW//PSL/v6KPZT7Bzx7gmiaTFBbwR6XZJFbS+fBGtugWKTJO9Rj5WyTyOeTTV8P6MmrHVl0mxGonrdi3TzT2+/jNO/ta3/56Rf9/RR/a1v/AM9Iv+/oo9lPsHPHuWLOxtNOthbWNrBbQKSRFBGEUEnJOBxyST+Nc54a8B6V4fuLq8eC0u9QmvZ7pLx7VVliEjZ2BuTgZPOe/Stv+1rf/npF/wB/RR/a1v8A89Iv+/oo9lPsHPHuJJoWkS6qmqyaXZPqKDC3bQKZV+j4zViCxs7aS4kt7WCJ7l987RxhTK2MZYj7xxxk1B/a1v8A89Iv+/oo/ta3/wCekX/f0Ueyn2Dnj3H6dpOm6RHJHptha2ccrmSRbeJYwzHqxAHJ4HNWyAylWAIIwQe9Uf7Wt/8AnpF/39FH9rW//PSL/v6KPZT7Bzx7lE+EdKw0afa4rZiS1rFdyJCc9fkDYA9hxWzBBFbQJBBEkUUY2oiDAUegFVP7Wt/+ekX/AH9FH9rW/wDz0i/7+in7OfYXPHuX6Kof2tb/APPSL/v6KP7Wt/8AnpF/39FL2U+w+ePcv0VQ/ta3/wCekX/f0Uf2tb/89Iv+/oo9lPsHPHuX6Kof2tb/APPSL/v6KP7Wt/8AnpF/39FHsp9g549y/RVD+1rf/npF/wB/RR/a1v8A89Iv+/oo9lPsHPHuX6Kof2tb/wDPSL/v6KP7Wt/+ekX/AH9FHsp9g549y/RVD+1rf/npF/39FH9rW/8Az0i/7+ij2U+wc8e5foqh/a1v/wA9Iv8Av6KP7Wt/+ekX/f0Ueyn2Dnj3L9FUP7Wt/wDnpF/39FH9rW//AD0i/wC/oo9lPsHPHuX6Kof2tb/89Iv+/oo/ta3/AOekX/f0Ueyn2Dnj3L9FUP7Wt/8AnpF/39FH9rW//PSL/v6KPZT7Bzx7l+iqH9rW/wDz0i/7+ij+1rf/AJ6Rf9/RR7KfYOePcv0VQ/ta3/56Rf8Af0Uf2tb/APPSL/v6KPZT7Bzx7l+iqH9rW/8Az0i/7+ij+1rf/npF/wB/RR7KfYOePcv0VQ/ta3/56Rf9/RR/a1v/AM9Iv+/oo9lPsHPHuX6Kof2tb/8APSL/AL+ij+1rf/npF/39FHsp9g549y/RVD+1rf8A56Rf9/RR/a1v/wA9Iv8Av6KPZT7Bzx7l+iqsN/FN0ZSPVWyKtVLTW4009gooopDKH9h6T/Zf9mf2XZf2fu3fZPs6eVnduzsxjO7np15pl/4f0XVLuG71DSbG7uYceVNPbo7pg5GCRkc81oGRFOGdQfc0nnR/89E/76FAGdN4a0K4v3v59F06W8cqWne1RnYqQVJYjPBAI+g9Kkk0LSJjemTS7JzfhRd7oFP2gL93fx82MnGau+dH/wA9E/76FHnR/wDPRP8AvoUAUrfQtItVK2+lWUQMH2Y7LdRmH/nn0+7yeOnNSSaRpk2ljS5dOtH08Kqi0aBTEApBUbMYwCARxxgVZ86P/non/fQo86P/AJ6J/wB9CgCrqWjaZrMKQ6pp1pfRo25UuYVkCn1AYHFNvdD0nUYIIL7TLK5htyDDHNArrGR02gjj8KuedH/z0T/voUedH/z0T/voUAZ8/h3RLnTV06fR7CSxVzILZrZDGGJJLBcYySSc+5pZfD2iz6nFqU2kWEl/Fjy7l7ZDImOmGxkY7elX/Oj/AOeif99Cjzo/+eif99CgB9UNR0ay1QxvcxsJosmKaKRo5Ez1wykEfTpVzzo/+eif99Cjzo/+eif99CgChYaFY6fctdIJZrpl2m4uZWlk2+gLE4HsMVpUzzo/+eif99Cjzo/+eif99CgB9FM86P8A56J/30KPOj/56J/30KAH0Uzzo/8Anon/AH0KPOj/AOeif99CgB9FM86P/non/fQo86P/AJ6J/wB9CgB9FM86P/non/fQo86P/non/fQoAfRTPOj/AOeif99Cjzo/+eif99CgB9FM86P/AJ6J/wB9Cjzo/wDnon/fQoAfRTPOj/56J/30KPOj/wCeif8AfQoAfRTPOj/56J/30KPOj/56J/30KAH0Uzzo/wDnon/fQo86P/non/fQoAfRTPOj/wCeif8AfQo86P8A56J/30KAH0Uzzo/+eif99Cjzo/8Anon/AH0KAH0Uzzo/+eif99Cjzo/+eif99CgB9FM86P8A56J/30KPOj/56J/30KAH0Uzzo/8Anon/AH0KPOj/AOeif99CgB9FM86P/non/fQo86P/AJ6J/wB9CgB9FM86P/non/fQo86P/non/fQoAfRTPOj/AOeif99ClEiMcK6k+xoAdRRRQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBGf8AXr/un+YqSoz/AK9f90/zFSUAZGqszyxQ7iBLKkZI9D1q8un2SqFFrCQPVAaoan/x+2v/AF8x1sVtNtQjYzik5O5X+wWf/PpB/wB+xR9gs/8An0g/79irFFZ88u5fKuxX+wWf/PpB/wB+xR9gs/8An0g/79irFFHPLuHKuxX+wWf/AD6Qf9+xR9gs/wDn0g/79irFFHPLuHKuxX+wWf8Az6Qf9+xR9gs/+fSD/v2KsUUc8u4cq7Ff7BZ/8+kH/fsUfYLP/n0g/wC/YqxRRzy7hyrsV/sFn/z6Qf8AfsUfYLP/AJ9IP+/YqxRRzy7hyrsV/sFn/wA+kH/fsUfYLP8A59IP+/YqxRRzy7hyrsV/sFn/AM+kH/fsUfYLP/n0g/79irFFHPLuHKuxX+wWf/PpB/37FH2Cz/59IP8Av2KsUUc8u4cq7Ff7BZ/8+kH/AH7FH2Cz/wCfSD/v2KsUUc8u4cq7Ff7BZ/8APpB/37FH2Cz/AOfSD/v2KsUUc8u4cq7Ff7BZ/wDPpB/37FH2Cz/59IP+/YqxRRzy7hyrsV/sFn/z6Qf9+xR9gs/+fSD/AL9irFFHPLuHKuxX+wWf/PpB/wB+xR9gs/8An0g/79irFFHPLuHKuxX+wWf/AD6Qf9+xR9gs/wDn0g/79irFFHPLuHKuxX+wWf8Az6Qf9+xR9gs/+fSD/v2KsUUc8u4cq7Ff7BZ/8+kH/fsUfYLP/n0g/wC/YqxRRzy7hyrsV/sFn/z6Qf8AfsUfYLP/AJ9IP+/YqxRRzy7hyrsV/sFn/wA+kH/fsUfYLP8A59IP+/YqxRRzy7hyrsV/sFn/AM+kH/fsUfYLP/n0g/79irFFHPLuHKuxX+wWf/PpB/37FH2Cz/59IP8Av2KsUUc8u4cq7Ff7BZ/8+kH/AH7FH2Cz/wCfSD/v2KndtqM2M4GapvqCxoXdQqqMklsACjml3DlXYl+wWf8Az6Qf9+xR9gs/+fSD/v2KiTUFkQOihlYZBDZBFXEbcitjGRmjml3DlXYyNStobR7aeCNY2aURsFGAQfb8K1ICTApNUNa/1Nr/ANfKf1q9bf6hfx/nWk3emmyI6SaRLTZG2xsw6gE06o5v9Q/+6axNBsMSGJSyhiwySRmn+TH/AM80/wC+RRD/AKmP/dH8qfQAzyY/+eaf98ijyY/+eaf98imLdW7zeUk8TSfN8gcE8HB49iRmpqAGeTH/AM80/wC+RR5Mf/PNP++RT6Y00SSpE0iLJJnYhYAtjrgd8UAHkx/880/75FHkx/8APNP++RRLNFAoaWRI1LBQXYAEk4A+pNPoAZ5Mf/PNP++RR5Mf/PNP++RT6KAGeTH/AM80/wC+RR5Mf/PNP++RT6KAGeTH/wA80/75FHkx/wDPNP8AvkU+igBnkx/880/75FHkx/8APNP++RT6KAGeTH/zzT/vkUeTH/zzT/vkU+igBnkx/wDPNP8AvkUeTH/zzT/vkU+igBnkx/8APNP++RR5Mf8AzzT/AL5FPooAZ5Mf/PNP++RR5Mf/ADzT/vkU+igBnkx/880/75FHkx/880/75FPooAZ5Mf8AzzT/AL5FHkx/880/75FPooAZ5Mf/ADzT/vkUeTH/AM80/wC+RT6KAGeTH/zzT/vkUeTH/wA80/75FPooAZ5Mf/PNP++RR5Mf/PNP++RT6KAGeTH/AM80/wC+RR5Mf/PNP++RT6KAGeTH/wA80/75FHkx/wDPNP8AvkU+igBnkx/880/75FHkx/8APNP++RT6KAGeTH/zzT/vkUeTH/zzT/vkU+igBnkx/wDPNP8AvkUeTH/zzT/vkU+igBnkx/8APNP++RR5Mf8AzzT/AL5FPooAZ5Mf/PNP++RTJokETFVClRkEDFTUyb/Uyf7p/lQAsbbo1Y9SAadUcP8AqE/3RUlAEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/wBev+6f5ipKjP8Ar1/3T/MVJQBj6n/x+2v/AF8x1sVj6n/x+2v/AF8x1sVrU+GJnH4mcF8QpmOq6BamC+1C2Z55LnTNPkZJpUVBiT5SuVRiOCwyWXGSMVh6FJJ4pTwlpGo391NZPZXl3Oq3EiSSMkqxxxSuCGLRh8Nzyy5rvtb8NRaxe2uoRX97p2oWqPHHdWbJuKPjcjB1ZWBKqeRwRxWf/wAIDp0Vhp8FlfahZ3di8skV/FIpnZpTmXeWUq248n5eoGMYFZGhx+iNceI7zQvDuqXt3NZWo1IysLh0a78icQxb3UhjhWyeeSATTfD/AJ/ijU9M8O6tfXk1lYW+oFmW4eN7porkQRs7KQTtXnr1OTXayeBNOXTtLtrC7vtPn0zeLe8t5FM37z/Wbi6sG3nk5HXBGKbJ4C05LHTYNPvb/TZ9OSSOG7tpF81lkOZA5dWDbm+YkjryMUASfD69ur/wVYyXk73E8TzW5mc5aQRTPGGJ7khASfWumqlpGlWmiaTbaZYoUtrZAiBjkn1JPck5JPqau0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMl/1L/wC6aw7uC3uTDHcP8u/Ij3YEhHYjv64rdkBaNgOpBFZV1pZvIfLlQ9cqysAynsQexpoCvaQW9sZo7d/l35Me7IjJ7AdvXFbkX+pT/dFZdrpZs4fLiQ9cszMCzHuSe5rVjBWNQeoAFDAzta/1Nr/18p/Wr1t/qF/H+dUda/1Nr/18p/Wr1t/qF/H+daS/hozXxslqOb/UP/umpKjm/wBQ/wDumsjQWH/Ux/7o/lUGp6hDpWlXeo3JxBawvNIf9lQSf5VPD/qY/wDdH8qyfE2m3OsabDp8IXyZrqH7UScfuFcO49923b9GNAHAW9hrmneJPCsFitkurT6Re3F093uKJLLLFJIcLgt87Yxkcd+MVek+JN7/AGHoQMNnbatqUt1DK8qSSQQm3YpIwVPmbLbcDI68niu5m0W2m8Q2utM8ouba3ktkUEbCrsjEkYznKDHPrWM/gLTv7OtLe3vL+2uLO6nura9hkUTRPKzM4GV2lTuIwQeAPrQBjr451Ofw7a3PmaXYXr3M1s32mGeQTlDw0EK4kcMPm65X3qpY69N4n1fwFqzRJBczJqKOm1gqyIuxuDhsblPB5xXTXfgtLttNnfXdWXULASql8rxea6SEF1bMe3HAxhQRjik0/wAC6dpceira3d6DpE1xLC8kiu0gmLF1cleRluvB4HPWgDz+S78RXXw7kub6e0u5P+EijW3XMinet/jazEthMgAYHA9a9B8N61rFzr+saLraWX2mxSCaOWyV1R45d2AQxJyChGe/HAqMeArEJcwf2jqH2Ka/TUFtN0eyGUSiU7Ts3YLDkEnqcYrat9FtrbX77WUeU3N5DFDIpI2BYy5XAxnPznPJ7UAaNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJv9TJ/un+VPpk3+pk/wB0/wAqAEh/1Cf7oqSo4f8AUJ/uipKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/9dJ9B/Wpaij/10n0H9aloAKKKKAIz/r1/3T/MVJUZ/wBev+6f5ipKAMfVDturd24VbhGJ9BWxVe6tVuUKkDpgg96zhpdwvypc3KqOgWbAFbe7OKTdrGesW2kbNFY39mXf/P5d/wDf6j+zLv8A5/Lv/v8AUvZx/mDnl2Nmisb+zLv/AJ/Lv/v9R/Zl3/z+Xf8A3+o9nH+YOeXY2aKxv7Mu/wDn8u/+/wBR/Zl3/wA/l3/3+o9nH+YOeXY2aKxv7Mu/+fy7/wC/1H9mXf8Az+Xf/f6j2cf5g55djZorG/sy7/5/Lv8A7/Uf2Zd/8/l3/wB/qPZx/mDnl2Nmisb+zLv/AJ/Lv/v9R/Zl3/z+Xf8A3+o9nH+YOeXY2aKxv7Mu/wDn8u/+/wBR/Zl3/wA/l3/3+o9nH+YOeXY2aKxv7Mu/+fy7/wC/1H9mXf8Az+Xf/f6j2cf5g55djZorG/sy7/5/Lv8A7/Uf2Zd/8/l3/wB/qPZx/mDnl2Nmisb+zLv/AJ/Lv/v9R/Zl3/z+Xf8A3+o9nH+YOeXY2aKxv7Mu/wDn8u/+/wBR/Zl3/wA/l3/3+o9nH+YOeXY2aKxv7Mu/+fy7/wC/1H9mXf8Az+Xf/f6j2cf5g55djZorG/sy7/5/Lv8A7/Uf2Zd/8/l3/wB/qPZx/mDnl2Nmisb+zLv/AJ/Lv/v9R/Zl3/z+Xf8A3+o9nH+YOeXY2aKxv7Mu/wDn8u/+/wBR/Zl3/wA/l3/3+o9nH+YOeXY2aKxv7Mu/+fy7/wC/1H9mXf8Az+Xf/f6j2cf5g55djZorG/sy7/5/Lv8A7/Uf2Zd/8/l3/wB/qPZx/mDnl2Nmisb+zLv/AJ/Lv/v9R/Zl3/z+Xf8A3+o9nH+YOeXY2aKxv7Mu/wDn8u/+/wBR/Zl3/wA/l3/3+o9nH+YOeXY2aKxv7Mu/+fy7/wC/1H9mXf8Az+Xf/f6j2cf5g55djZorG/sy7/5/Lv8A7/Uf2Zd/8/l3/wB/qPZx/mDnl2Nmisb+zLv/AJ/Lv/v9R/Zl3/z+Xf8A3+o9nH+YOeXY2aKxv7Mu/wDn8u/+/wBR/Zl3/wA/l3/3+o9nH+YOeXYl1ogpaID8xuFbHsAc1ft/9Qv4/wA6oW+lssvmSu7v03SNuOK0wAoAHQUTa5VFDindti0ybmF/oafQRkYrIsZCQYEx/dFPqsbYgnY7KPQHFHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNFVvIk/wCesn/fVHkSf89ZP++qALNMmIED5/umofIk/wCesn/fVAtiSN7sw9Cc0ATQ8Qp9BT6AMDFFAEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/16/wC6f5ipKjP+vX/dP8xUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFISFBJIAHUmloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKQsAQCQCenvQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBGf8AXr/un+YqSoz/AK9f90/zFSUAcl8Tta1Dw98O9W1XSrj7Pe26xmKXYr7cyop4YEHgnqKbr+vXum+PfDVgk5XT7q2vZbqJYwxfy0VlwcZGMngda3PEOh23iTw9faNeF1gu4jGzJ95fQj3BAP4VzmkeCNVt9XTVdY8TvqV7a2b2di62aRCANjLkZO9+B6DjpQBW0/4p2l14Vv8AxNdaVcW2k20YkjlFxFK0pLbQm1WJRyccHpnkioT8WrODSdTu73SbiC5054PNtY545iyTNtVlZCQT1yOo6VCPhHFew64NZ1WOebVbZIHeysltVBR96ysoJDSbgMnjjI71YPw0ubjw7d6Xd6ppwknlt3Wez0hLfAicPhgrfMWx6gDsKALNz8QNRtbux09vCGoNql7by3EVmtxFuVUYD52ztXIOepxwOtFx8SVbwfp/iTTtEuLuzu43kcvcwwLBsO1lZnblsggAZzg1u3Phz7T42sPEf2vb9ktJbX7P5ed+8g7t2eMY6YrjIvhDJb6XoNrBr0Zk0qO5i8yawWVXWaQuWVGYhHGcBufp2oA1Lj4mRumjjSdDvdTm1XT2voIopEQqFxuVyxwMZPTPIwM5pvh/4o22u6ho0X9iX9pZ6wkn2O8nZNjyRqS64ByAMEAnqegqfw98PP7ButBn/tTz/wCydOlsdv2fb5u9t277x249OfrUekfDcaXY+EbU6r5w8PSTuSbbH2jzAwxjcduN3vnFADdC+Kena7rlpZRWM0dnfySxWV400ZEzR5zmMHegO04LDmu9rgfC3w1HhTVImtr2ym02CSR4YpNMj+0ruzhTcZyQCeuM9uld9QBw9/aHW9PuNYvJIfJjuZV/0hDJHa28RZSwj6M5KZ5B647VJoSTaRHo0whNtHqEr289oFKIDh2SVUJ+QkIMqOPm9q0bzS9TtGvU01YbixvSzSWzymJ4nb7zI+GHJycEde/NWLOw1G61KLUNWMEf2cEW1rAxcISMF2cgbmxkdAACeuaq4jbrMXXbVroQiOfY0vkrPs/dl/TOf6Vp1jJobpNGn2s/Y4p/tCQ7OQ2cgbs9M0lYY6LxBBLsItbsJIxVHMY2uwz8oOepxgVBZazNexWDyCSBpZSpCxgpJjPQk5A46+tR6TpV1Ja2ZupikMErSrbmLawbc2Mn079O9WbbQ5IVtYnuUeG2kZo18vBIOcgnPv8ApT0FqSQ6/azyKojnVHDGKRkwsm3rtOf54p1rrkF26KsFynmRmSMvHjzAOoXnk1Xh0B0MMcl4ZLe3D+Snl4ILAjk55xmpf7FPk2cYuSptoZIgwXBO5cZ68YpaBqV7/XN2n3iwJPbXUUauBKoBwWAz1P61vVzqeGCIpka5jBe3EA8uDb0IO488njn610Cbti7yC+PmKjAz7UOwDqKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDwrwz8QPENy/h2U+KYdWvtQ1I2t3ov2SIPDDvdTLujAK4VQ3zcc+ld/Z/ENZPGMPh3UNHn0+W5SVrZ5LiKRn8sZIZEYlMgEjPWtTwZ4Ui8IeHINKWZLmSNpC1yIRGz75GfBGT03Y69q5TQvhNPomr6XejX0lTTZbiSEDT1WWQyqwJkk3ZdhuHJGMLjHNAF3Tvinb3/AIb1LxE2i3cek2kJlSZJ4pGkw23YyK2Ubvg8Y5zVy18fs0GjzX2jSWsOqXwsoZVuopo8sm5GDISCDgj6iqNh8OdSs9R1LVf+EhgXVLy0Fr50GlxxxsN4YvLHuKyOcbSeOCcVAPhOv/CJalpI1ZILy9vo79Lm2sxHFbSIVx5cIbA4BH3u/tQBc0v4qaZq8FpJa2cxa51VtPVGYAhQnmGb/c2YP407RvibbavqWnRvo19aabqsjxabqExXZcMueCoO5M4OM9aj0r4WWOleK7LWEvTJbWtgtqLMw4DSCIQmUtu6mMYxj8abovwym0y/0lbrxBNe6Po0rzadYtbKrRs2cb5AcvtyccD+lAEdv8WIptBudcfw/qEenRMYIpS6E3Fx5mwRIucnPXdwBgjqKk8F69rGr/EDxNBqlrdaesFtaFLCadZBCWD5KlSV+bANS/8ACtUPw8TwsdWcTQ3LXdvfJAAY5fNMinYWOcZx159q0PC/hLUNF17VNa1TWxqd5qMUMchW0ECp5e4DADHjBH5e/ABvazftpeiX1+qB2t4HkVT0JAyAfauK8QaE1mIbiWO31C6lVVBntzPJdznJKD/nkgVcgrjH4c9/cW8V3bS286B4ZUKOp/iUjBH5VzotfENmLe3WK21CO2fME73JhcjaVAkXY2cAnkHnA4poTLWkb9P1e80bzZJbeKGO4tzIxZo1YspQk8kApkZ5wcdq2ZZUgheWRtqIpZj6Adaz9I02e0a4u76ZJr+6KmV41IRVUfKig/wjJ68kkmr1zbpdWstvJnZIhU46jNAzOTxBatFI7w3MWyLzgsiAF09V5qK58QqlrcNHa3CTxxCRVmTAKk4Ddemar3mjXKWE8ktwbqVLYwwokWMDjnqcmrC6JLcRzPeXW+SW2EC7Y9oRevIzyc4p6C1H/wBsLFM01w00Ua2olMLRjg7iucg5yfTp0p51+2WC4klhuImgCs8UiAPhjgEDPvUcuhvdo/2q6Bd7cQExx4wQ24N1+nFJLoU11Hcm6vRJPMixhxFgIqtu6Z7kUaBqWItZjlScraXfmQlQ0JjG/wCbocZqudX+1z2Bti6I1w0UqMBnIXOD19qfe6KbqW6kFxt89om2FMr8meG55Bz+lMt9Ca28orcIXS6NxxFtXBABUAHj2o0DU2qKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf8ArpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/wB0/wAxUlABRUcshjTIGWJwB703y5z/AMtwPYIKAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKh8ub/nv/AOOCjy5v+e//AI4KAJqKg3SROodg6scZxjBqegAoopGIVSx6AZoAWioFE0qh/MCA8gBc8Uvlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFHlzf8APf8A8cFAE1FQ+XN/z3/8cFIwmiUv5gcDkgrjigCeikUhlDDoRmloAji+63+838zUlRxfdb/eb+ZqSgAooooAhX/XyfUfyFTVCv8Ar5PqP5CpqACiiigAooooAKKKKAIo/wDXSfQf1qWoo/8AXSfQf1qWgAooooAjP+vX/dP8xUlRn/Xr/un+YqSgCC46xf8AXQVPUFx1i/66Cp6ACisrUtQk0y/gmmb/AECRGRgF+645B/EcYqC21mWG3iF3FPcXUyGfyoIwfLjJ4z0/xp2Fc3KKoQ6va3EtrHFvb7SjOjY4AHUH3qu3iK0WOJxDcOZZGjRVQEll9s+9FhmvRVWa/jt4rV5I5F+0SLGqkDKsw781Bca1a2rXKyLKWt2RCFUHcWGQBz/hSsBo0VmvrMUUCPJa3SySOUSAx/vGI6kDPT3zUbeIbRYI5PKuCzyNF5Qj+dXH8JGevT86dgua1FY8viKCF5EazvS0Sq0gEYOwEZ554qe61iK1UOLa6miMYlMkUeVC+5JFFguaNFZdzrttbSBBDcTZhE+YkyNhzyeeOn60Wuu213cxQpFcIJgTHJImFfAycHNFgNSisu3121ubiOJY51SVisUzphJCPQ5rUpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAENz0j/66Cpqhuekf/XQVNQAVHN/qH/3TUlRzf6h/900ALD/qY/8AdH8qfTIf9TH/ALo/lUGpG5XT5jaczhfkAXOf1FAFqiuelGuHQYkUn7YX2MAMMFHGd272znvmnXj62VsGgGSQHmxHjaemMbufvdP9nNOwrm/RWNKdW/4SBAn/AB44Cs23gdzxn/Zxntmm2f8AbDatdCdttsQfLcpkZHAwN3HXPviiwzbornbR9d/s++aZWE/34VKZJzzgfNx6Y7Uso1w6DEik/bC+xgBhgo4zu3e2c980WFc6GisC/bWzBYvb5LkB5gseNp9D83P3un+zU1wdWGt24j5swAHYJxz143c/d69t3eiwXNmisSz/ALYbVroTtttiD5blMjI4GBu46598VFYvrgsr2SdSJh+8hRkznPOPvfhjtRYLnQUVn6ML4aeF1DPnqxXkc4HHXJz65rQpDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApk3+pk/3T/Kn0yb/Uyf7p/lQAkP8AqE/3RUlRw/6hP90VJQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBGf9ev8Aun+YqSoz/r1/3T/MVJQBBcdYv+ugqeoLjrF/10FT0AUdYsX1HTJbaPYHYqVL9Bhgf5ZqvdWN7Hqpv7DyGaSLynSYkAc8EY/lWtRTuBz6aLeWUenNaPC81srq/mkhW3HPGPQk06w0W6tZrJ5ZIW8iWZ32k87xgY4reoouKxn6vZz3cEBtinmwTrMokJw2M8cfWqA0vUWF9JOljM906ExsW27VBGOnB6YNb9FFx2OYbw7dPZQhzCzwzO6QO7FAjAfJu68YqzBosyGyZYreAQztK6RuxyCAOp78VvUUXYrGU+mTNLrDho8XsSpHyeCEK88ep96zrvQL6by0zbzItssSiV2AiYDBIAHP1NdNRRcLGNDpFxG4YvFj+z1teCfvjv06UkWjTKulpI0ZW1SRJcE87lxxx/hW1RRcdjnNN8PyWV3F5tvayJExYTh3Dnrj5emeldHRRQ3cAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQ3PSP/AK6Cpqhuekf/AF0FTUAFRzf6h/8AdNSVHN/qH/3TQAsP+pj/AN0fyp9Mh/1Mf+6P5U+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZN/qZP90/yp9Mm/1Mn+6f5UAJD/qE/wB0VJUcP+oT/dFSUARxfdb/AHm/makqOL7rf7zfzNSUAFFFFAEK/wCvk+o/kKmqFf8AXyfUfyFTUAFFFFABRRRQAUUUUARR/wCuk+g/rUtRR/66T6D+tS0AFFFFAEZ/16/7p/mKkqM/69f90/zFSUARToXQY6g5FR/aJRwYcn2arNJgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAEH2iT/nh/49R9ok/54f8Aj1T4HpRgelAFceZO67l2qpzjPerNFFABSOu5CvqKWigCqsksShDHuA4BzinfaJP+eH/j1WMCkwPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqPtEn/PD/x6p8D0owPSgCD7RJ/zw/8AHqa0ksqlBHtB4JzmrOB6UuBQAiLtQL6CloooAji+63+838zUlRxfdb/eb+ZqSgAooooAhX/XyfUfyFTVCv8Ar5PqP5CpqACiiigAooooAKKKKAIo/wDXSfQf1qWoo/8AXSfQf1qWgAooooAjkBBDryRSeenfcD/umpaTavpQAzz4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mjz4/U/98mnbF9KNi+lADfPj9T/AN8mjz4/U/8AfJp2xfSjYvpQA3z4/U/98mkM4IwgJP0xT9i+lKFA6CgBI12oB3p1FFABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQAU0yxg4LqPxpH+ZlTsQSaeAAMAYFADPOj/wCeif8AfQo86P8A56J/30KfRQAzzo/+eif99Cjzo/8Anon/AH0KfRQAzzo/+eif99Cjzo/+eif99Cn0UAM86P8A56J/30KPOj/56J/30KfRQAzzo/8Anon/AH0KPOj/AOeif99Cn0UAM86P/non/fQo86P/AJ6J/wB9Cn0UAM86P/non/fQo86P/non/fQp9FADPOj/AOeif99Cjzo/+eif99Cn0UAM86P/AJ6J/wB9Cjzo/wDnon/fQp9FADPOj/56J/30KPOj/wCeif8AfQp9FADPOj/56J/30KPOj/56J/30KfRQAzzo/wDnon/fQo86P/non/fQp9FADPOj/wCeif8AfQo86P8A56J/30KfRQAzzo/+eif99Cjzo/8Anon/AH0KfRQAzzo/+eif99Cjzo/+eif99Cn0UAM86P8A56J/30KPOj/56J/30KfRQAzzo/8Anon/AH0KPOj/AOeif99Cn0UAM86P/non/fQo86P/AJ6J/wB9Cn0UAM86P/non/fQo86P/non/fQp9FADPOj/AOeif99Cjzo/+eif99Cn0UAM86P/AJ6J/wB9Cjzo/wDnon/fQp9FADPOj/56J/30KPOj/wCeif8AfQp9FADPOj/56J/30KPOj/56J/30KfRQAzzo/wDnon/fQo86P/non/fQp9FADPOj/wCeif8AfQo86P8A56J/30KfRQAzzo/+eif99Cjzo/8Anon/AH0KfRQAzzo/+eif99Cjzo/+eif99Cn0UAM86P8A56J/30KPOj/56J/30KfRQAzzo/8Anon/AH0KPOj/AOeif99Cn0UAM86P/non/fQo86P/AJ6J/wB9Cn0UAM86P/non/fQo86P/non/fQp9FADPOj/AOeif99Cjzo/+eif99Cn0UAM86P/AJ6J/wB9Cjzo/wDnon/fQp9FADPOj/56J/30KPOj/wCeif8AfQp9FADPOj/56J/30KPOj/56J/30KfRQAzzo/wDnon/fQo86P/non/fQp9FADPOj/wCeif8AfQo86P8A56J/30KfRQAzzo/+eif99Cjzo/8Anon/AH0KfRQAzzo/+eif99Cjzo/+eif99Cn0UAM86P8A56J/30KPOj/56J/30KfRQAzzo/8Anon/AH0KPOj/AOeif99Cn0UAM86P/non/fQo86P/AJ6J/wB9Cn0UAM86P/non/fQo86P/non/fQp9FADPOj/AOeif99Cjzo/+eif99Cn0UAM86P/AJ6J/wB9Cjzo/wDnon/fQp9FADPOj/56J/30KPOj/wCeif8AfQp9FADPOj/56J/30KPOj/56J/30KfRQAzzo/wDnon/fQo86P/non/fQp9FADPOj/wCeif8AfQo86P8A56J/30KfRQAzzo/+eif99Cjzo/8Anon/AH0KfRQAzzo/+eif99ClV0b7rKfoadSMoYYP/wCqgBaKbGxZeeoJB/CnUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/wBev+6f5ipKjP8Ar1/3T/MVJQAUVzvjiVo/ClzGvmgzyRQF4yRsDyKpLEdFwTk+lcV4w8a6hofiyx8NaJqujWkcaQxGO4kJdSxXaGypx8gPvhh3xQB6vRXKeGlSy8W+JtNhSX7OskFwnzFo0LxjcuSeGyN2PRga6ugAorwv4U6baajNZXt3oOtzXa3kzDVftbfZgUZioK+Zz0C/d61tR/ErxSYYdWl03SV0VdaOlzYeQzsPM271H3RgY6k5PpQB61TFljdnVHVmQ4YA5Knrg+lecX/xG1Oxh1zTzZ2Z1601eHT7KD5gkyTYMTtznJQOTj+7VC+8Yv4Zh8d6pY6PY/arHUbaJyoYG5L7QS3PBwxxjj60Aes0V5xdeKvG0er2PhuKx0L+37qCS+cu8v2eC3BAVTj5mcnIJGB04qonxN1nUbDw6NM0uyXUtSvLiwuIbmVvLiliHJDLzt79Dxx70AepUV5V/wALK1+38L3M9xp2nSa1Z6+NHmijZ1gkyR8ykklc5759cdqrXfxB8d2Z8TWz6Z4fa58OLHPdyLJNskidd6qi9d23OSSB7UAevUV5V4k+K13a6lDZaPBYow06PUJWvlmfzN43LEgjHDY/iPHNTT/EDxPqmqRWPh7S9NjeTQo9Wb+0WkBiJJDIQv3jnAHTufagD0+ivGb7xd4n8Qat8Or7R3srZdUhuJDBK8ojaZEIcSBTygHK989a6j4htNpGqeFfEySMsdjqK214FYhfJnGwsw74OMfWgDvqK8js9evbVvFni+G70+EXWrLp9o2pyuIRDCChZFQEsWbPyjBOPalg+K+ryeC5NSGm2k+q2+tJpckKiSKOYNjDKHwyZzj5uncdqAPWPNj83yt6+Zt3bM849celOJCgkkADkk15vZalqMHxLS21zT9EGsJ4dkuXvbdpFVVE5Cx7mP3MYJOM5z24rP0X4jajrWsXuiagdKuILjTJ57e501JwgZRhk3SAB+CfmXjigD1aKWOeJZYZEkjblWQ5B+hFEU0U6loZUkUEqSjAgEdRx3rxjwF4p8Q+H/D3gm3vrPTX0LVXFlA0LP8AaY3JbazZ+XBPYdB3puieMm8HeAp5YIYZLu+8SXNrCZ93lxkuSXfaCxAA6Dk5oA9soryZvijrg8J3N6um2sl1a6glpPeRwzm1SFl3faNmPM2joR6969B8LapNrXh21v57nT7mSUNmXTnZoWwxA27uQeOQehyKANiiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/AK+T6j+QqagAooooAKKKKACiiigCKP8A10n0H9alqKP/AF0n0H9aloAKKKKAIz/r1/3T/MVJUZ/16/7p/mKkoAoa3pa6zo9zp7TND5ygCRQCVIIIOD15ApIdHtVuYb24jjn1CNFDXRXDMQpXOOg4Z+O241oUUAZOj6K+mXepXc1491PfzLK7GMIFCoEVQB7L1rWoooA4jRPhpb+H54GsPE3iNLaGfzxZm6j8hiW3FSojHyk5zz3qx/wrrSP7BOj/AGm++znUv7T3b03+bv34ztxtz2xn3rr6KAOZvPAukX3je08Vytci+tUCiJXAhcgMFdlxksA5wc+lVtR+HOkanba7BNc3yprVzFc3BR0BRoyCoTK8D5RnOa6+igDm/Evguy8S3dpfNe6hp2oWqskV5p8/lSBG+8pJBBB+lQWnw90SwTQEtTcxLoksk0AEgPmu4wzSEgkk5J4x+XFdXRQByE3w50iaK8ja5vgLrV11h8OnEwxhR8v3OOnX3qxdeBNLu7nxPPJPeBvEcMUF2FdcIscZQeX8vBwec55rp6KAOPvfh1p89xY3Vlqmq6Xe2lmlj9psp1R5oVHCuCpB9c4HP0FaEXhCxi15tZN1eS3b6YumMZJAwaMNu3H5clyepzj2roKKAOLf4aaV/YOi6XbX+pWr6KzNZXsMqidN2d2Tt2kHOOldBr+gWfiTw7daJqDSNbXMYjd1IDjBBDA4xkEA9K1KKAOOn+G+jyeFdK0GG5vrZNKnW5tLqGRROkoJO4nbgkliTx3qKH4X6PFYS2hvtUlE2px6pJLLOrSNMmOpK9DjJ788EV21FAHPal4M0vVdfuNYu2uHluNLfSZIQ4EZhZixOMZ3ckZzj2rI0j4X6XpN5a3X9q6xdva2kllAtzOjLHCw27QAgxgdP1zxjuKKAOG0T4WaRot/ptwNS1e9i0sH7Fa3lyHigYjBcKFHP6DsOmJX+GWiyaXeae1zfiGfUTqcDJMFeznzndEwHHJPXPWu0ooA5VvBcraVHaHxV4i89JzOLsXS+Zkrt2kbNpTH8OOvPWtTw54esfC2ixaXp/mmFGZy8rbndmJLMx9STWtRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBEwJnXDFflPT8Kdsb/nq/5D/CkP8Ar1/3T/MVJQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQAzY3/PV/yH+FGxv+er/kP8KfRQBHDwh5z8x/nUlRxfdb/eb+ZqSgAooooAhX/XyfUfyFTVCv8Ar5PqP5CpqACiiigAooooAKKKKAIo/wDXSfQf1qWoo/8AXSfQf1qWgAooooAjP+vX/dP8xUlRn/Xr/un+YqSgAorjPive3enfDHW7uxuprW5jSMpNBIUdcyoDhhyOCaxBfXXgLxnDYzazqOpaNdaXcXskd9L58tu0IDFlc87SMjB70AenUV4/ZfFXVtcsb2K3tNOjnuNMmvLRoZ5GNuUGdk2UA3bSSCuRkYqjoXiDUvBHw50m4toNBFzqMDX0n2i8maa6O1TkIFLFyOpztHrQB7dRXDaV4/fVtY0+2is0S3vPD/8Aa+SxLI+8L5fuOTz7VzNn4k1LX/E3hnW7eGCO8ufD93MkDuwi3hxjJGTjj0oA9forifhTqWu6v4Esb7XJYJmlTMMyOzSSLuIJkyAAc+meK7agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI4vut/vN/M1JUcX3W/wB5v5mpKACiiigCFf8AXyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/wBdJ9B/Wpaij/10n0H9aloAKKKKAIz/AK9f90/zFSVGf9ev+6f5ipKAMnxL4ftPFXh670S+kmjtroKHaBgHGGDDBII6gdqzNI8BaVpd5dXtxcX+q31zAbaS51KfzXEJ6xrgAKp9hXU0UAclpPgK20iyuLCLWtZl06W2ktY7Oe4Vo4Efj5PlzkdBknAqtcfDHSpotMSLUdVtWsLD+zRJbzqrzW/9xzt9uq4NdtRQBxMvwx0h7fSYodQ1W2bTbQ2Ky29wEeeA9UkIXofbBq1pvw+0vSptBltbq9DaNbyW0W51PnRP1WT5eeeRjFdZRQBg+FfCtv4RsJLCyvr2ey3ZgguZFcW4ySVQgA4yT1JreoooAKKKKACiiigAooooAKKQEHoQccUAg9CD2oAWiiigAopAQehB7UtABRRRQAUUhIBAJGT0o3Lt3bht9c8UALRRRQAUUUUAFFFFABRSZBJGRkdRS0AFFICD0IPaloAKKKKACiiigAooooAKKKKACiiigAooooAKKTIJIyMjqKWgAooooAKKKTIzjIz1xQAtFFISB1IH1oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI4vut/vN/M1JUcX3W/wB5v5mpKACiiigCFf8AXyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/wBdJ9B/Wpaij/10n0H9aloAKKKKAIz/AK9f90/zFSVGf9ev+6f5ipKAMHxk7p4VvGjLBsxgbW2nmReM1S8y40TTEez0wWlzc3kduI7q5aZSG4DZDHHJ/SujvrG31KzktLuPzIJMbl3Fc4II5BB6gVVj0HT41VfLmcLKky+ZcSPh1OVI3Mf/AK/emmIyovEN9b3SRaglqEjvTaTyRBgBuQNGwyeOTg59qpx65cSTvqT2kCTf2TcXUJIbIQONin5sEEYJ/pXSXGi6fdQXcM9vvju3Dzjew3MMYPXj7o6elLJo9hLnfbjm2NpgMQPKPVeD7detF0Bix6vrtxPbWUSaet3Nbm8JdX2JHwFXg5LZPJ6Y7VWj8U6nqCRNYQWkedPa8cThm5V2UqMEdSODXQXmhadfxwJPAT5C7I2SRkZVxgjIIJBFOTRtPiYNHbKhFv8AZRtYgeVnO3Gf160XQGFdeI9UdBJYxWaoulJqLiYMTzuyowR6df8AIjl8WX1jBcSXlvbuTZJeQLDu4DuECsT1wSOQB3roRouniMoLf5TaizI3t/qRnC9fc89fekfQ9Nlz5lqrg2wtcMxI8oHIXr69+vvRdAYJ8RayluytaQ+e11BBFLJbywxuJMg8N82QR19xUV/q2syQxwebbQ3UOqxWztErhHDbWXjdnHPIzzXQxaDp8UaR+XK6pKkqeZPI+1k+7jLdB6dKfPothcpcLJCf9IkWZ2V2B3qAAwIPBGB0p3QFfUdUl0qfTjdGEWsxaO4mwRsfblcc9CQw79qwrrxZqUGnQ3YjtC5gFy9sIpHcRljglgcINuOT3zxXUXel2d/p32C7iM1vhRtd2ycdDuznPHXNV73w7peoOWuLdjujETKkrorKOgIUgHGeKSsBjatqt7cJrsXk2j6fZwjcsgffLuiDAcMMcnr6fnT9R8R3GnXqxxfZ5LaIwrNGkUjPGr4GS/3VPPAOc1uPpFjIl4jQZW8ULON7fOAu0d+OBjioLnw3pV3cNPNbuzuVZgJnVWKjCkqDgkAdaLoDnbHUNQ0yTUrlBatYf2y8cqMG835mCkrzjjI4x60sGsT6Yk1vaxhp7vVrpQzRPIFCsSTtT5ifYf0roR4b0oX32z7Mxl84z4MrlfMP8e0nGfwp0nh/TZYpI2gbD3BuciRgyyHqykHK/hTugMSTxHq0UVpJc2sVlC6sJrie3l2Bw+0DHBQEYILeuO1Xdcn1JPEGiwWVxFGkzS7ldWIYhCfmAIyMdPfmrcvhvTJ1VZY53VV2lWuZCHG4thvm+bkk85q3faba6iIvtCvuibfG8cjIynGDgqQehxSugOW03Ub/AE67lO22axuNamtiMN5gZnb5s5xjjpipm8TX76kbWFrWWKYTrDMkMgVGQEjLE4foc7eh710H9jWBVV8jhbr7WPnb/W5zu6+p6dPaobfw7pdreR3UVuwliZ2jzK5VN2d21ScAHJ4xTugM+wvdUg8Crfu8NxdJaiZCwb5lCg/NzktjPP0qkfGck91cw2kUTCR4ksGdTiUllV93PYt2x0rpbHTLXTrQ2lsjCAk/u3kZwAew3E4HtUEPh7SrcWQitABYlmt8ux2Fjk9Tz+OaV0Bz1rIsniDTtsKRbdTvlIQn5iFbk5J5P5VG3/JJB/17D/0OupGi2CyxyrCVkjuHuVZZGBEjfePXoc9OlC6LYLpB0rySbIgjyi7dCc4znPX3p3CxhXviTUtIN7BfxWs1xHbxzQm3VwvzPsw2cng88dRWroWo3199qS+tyjRMuyUW8kKyKR2V+cg5B/CnxeHNKiguYfsvmJcqFl82RnLAdBliSMdsdKtWOnwadGyQebhjk+ZM8h6YHLE44paAc5p3iPVZV0ye8jsvI1BJCiwhg6Mqluck5Bx+GetFtr2t3EOlL5enrcampeLKvtjRVy27nJJyMAYx71d0Hwta6XZ2xuEEt5FEYy/muyru67AeFz7AVfm0LTp7K2tHgIitseQVkZWjwMcMDnp707oDEi8Wzw4e/hhSNY7hGMZPM8J5AJ/hK8jvkGoU1m7tJdQmks7ddSeOzjP3lXzJMjDZJwFz2xXQP4f0qTT7ewezQ2tu4kjj3HhhnnOcnqevXNPuNG0+7+1+fbh/tios+Wb5gn3e/GPaldAcoNUvtH1XXJZ1gmvZZbSBPKjfZllbB2jLHjsOSelaEev6tKbayFtFHe3Fy8aSzQSxxGNU3ltrYbPbGeo61qJ4a0lLe5hNszrc7TMZJXdnK9DknIIz1FOfw/p8tottIk7qkvnK7XEhdXxjIbdkce9O6AxtIe8i8N67IHiW7S7umLKDtDA845z64pNO1XW5bfTNPgezku5bEXbTTq+NmFABwclyTyf0rorLSrLTrR7W1h2QOxZlZi2SeuSSTVM+F9Ja3igaGUpFkRn7RJuRSACobdnbgYx0pXQFf/hIJ5fCcOuQ268YeeIgn5A2H2/QAkH2qu/iO+ub8WthHbET3TwW0soYriNN0jHB55yBjHSti7s5ItHay0yG2X5PKRJsiMLjBzgEnj86r2/huwj0Sz0yZDIlsAUkVijB+pYEHIJJJ696NAKOn+I7u51GyspoYVkae5t7gpnG6IA5TPY571FZa/q2pHTY7aOzR7qOZ5GkViECSbRgA88e/f8ACtZvDelNaQW32YpHAxaMpK6sC33vmByc98mprPRtPsDAbW3EfkI8cWHY7VZtzDk+tF0BU1DUdQOtppWmi1WUWxuXkuQxGN20ABSO/es6TxHqSNc3fk2h0+1vRZyp83mschSy846sMDHSty/0ax1OWOW5iYyxgqskcjRttPUZUgke1Q/8I5pX21bv7L+9VlfHmNtLgYDFc4JHrjNGgGSviHVPtrOYrP7Euqf2eQA3mHLYDZzjuO3r0qGy1XVbXT7yW5vbQudRkgj3xSuc7iCqqCSenyqOg710f9jWAUr5HBuvtZ+dv9bnO7r6jp09qryeG9MleVzFKDJN552TyLiTn51weDz1FO6AxLfXJL+80iW4tIhdK13GxIZdjIvYE8ZGMg5xUlr4m1GKG1udRhtTBdWUt1GtuGDKY1DEEk9wfw962rfw9pdr5Pk223yTIyZkY4LjDdTzketSpo9ggtFFuNtpG0UILEhUYAEcnnIA65pXQHMf8JZq8elz3kllGyi3SaJ/s8saAs6rsLNwxw2QRxwa3L/UNQ0zRElnW2lv5JEiUIGWIM7YGcknAzz6+1PTw1pSW0lsIZTbyKFMTXEhUAEMAAW45APFX72yt9Rs5LS6jEkEgwykkZ5yOR7ii6A5C2vr7Tde1d7j7NJcSXNjC5jVgm1sjIBOQcH161o6jr9/b3F3Baw27SR3sFrF5m7B8xActg+p/Kr6eGtKS2uYPs7st1tMxeZ2Zypyp3E5BHtTofDul267Y7ZuZ1uCWldiZF6MSTyf507oDCfVL2wvdXKwWbXyzWcTSAOqyFxjkbjjGeMfrUl14l1CxiuILoWa3MN5FbtOFbykR13ByM546dR1rfk0ewmmmmkgzJM8ckh3t8zR/cPXt/8ArrP1vQBeETWiIJ2uUnmDTPH5mxCowwyVIyOQO1F0AadrN43hm51a+jicxrLJGsKMgdFzg/MSecZz6GsY6pfWWrnVNRW2kZdGeZEtgwHLodpJJ9uf0rodH026t7C5g1Kb7QJpGIjaVpQkZAGzc3Ld/wA6LTw1pVkztFbMS0Jtz5kryDyyclMMSMcUXQGMfEurxabdzS2kZkRYWikNtNFGS7hWU7+SRkHI9aZqOoX0wn0/UBbGa2vLNw9uGCsryDggk4Ix6960r/wvbvolxp9juTzjEMTTyMoVHDYGSccZ6etW18O6YlrPbiB9s7rJI5lcyMynKneTu4xxzRdAZZ8Raj9oa5ENr/Zy3/2HZlvOzu27/TrztxnH50z/AISi9aDy1ht/ttvHcvepztj8ocY56MSv4ZrZ/wCEe0v+0ft32Uef5nm/fbZ5n9/bnbu98e9VtP0NvtOqXepJA02oARukBO1Ywu3G44OT36dqNAMpfEHiBiEEem7nsP7QU7XwE/uHnk8jngDnrTrnxVfyNENPtFZvscd06GCWUuXGQi7BheB949z7GuhGj2CsrCDlbb7IPnb/AFX93r+vX3qGbw7pkwgzA6GCEQI0Uzo3lj+ElSCR9aLoDIn8RanG15dLDbLY2lzFE6OrCYq+zPfAI3/5xzd0KbUZtV1gXM8T28dyURQrZU7UxjJwBjtjqSa0JNHsJobmKSDclzIssw3t8zLjB68fdHT0qO40HT7qa6kkjkzdBRMFmdQ+MYOAcZ+Uc0roDSooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAji+63+838zUlRxfdb/AHm/makoAKKKKAIV/wBfJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/AF0n0H9alqKP/XSfQf1qWgAooooAjP8Ar1/3T/MVJUZ/16/7p/mKkoAKKKzY9e02W3s5kuNyXjmOABG3OQSDxjOBjkngUAaVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFV/t1v/AGj/AGf5n+leV52zafuZxnPTrQBYoqvaX1vfCY28m8QytC52kYdeo56/UcUwajCdYOmbX88QC4zgbdpYr+eRQBbooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/wDXSfQf1qWgAooooAjP+vX/AHT/ADFSVGf9ev8Aun+YqSgArzbwxHLpEOla1dSiazuN9qcr/wAeoLnaQfQsDk8da9JoppgecaEtxd6vC13d2yag00sd3E80omkUhsoU+6ABgjHAwO9aug/a7jWoNNuTKRoaSK7k8SljtjJH+5k12DLkHB2sRjcOoqnpmlxaYsxWWWead/MlnmILucYHQAYA6DtTuKxeoooqRhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzPiydtIksdejQubUvFIo/iV14z7Bgv5101FCA851W3hsNL0/SrlVSdbNp2muJ3VfMJyQqqfmk3Hj29adLNPcxmQuzXEvhpWBz8zsGJP1PevRCAcZHTpSYGQcDI71VxWOEfV31DUbiTR52mkTQ227M8SbgePVgD+dTeCgDfNJDe2rxSWoMkEU0jv5m4fO4boeoP4V2wAAwBikAAzgAZ5NK4WFooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/wDXSfQf1qWgAooooAjP+vX/AHT/ADFSVGf9ev8Aun+YqSgBruI0LN0qPzZj0gOPdhSXHWL/AK6Cp6AIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4o8yb/AJ4f+PipqKAIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4o8yb/AJ4f+PipqKAIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4o8yb/AJ4f+PipqKAIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4o8yb/AJ4f+PipqKAIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4o8yb/AJ4f+PipqKAIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4o8yb/AJ4f+PipqKAIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4o8yb/AJ4f+PipqKAIfMm/54f+PijzJv8Anh/4+KmooAh8yb/nh/4+KPMm/wCeH/j4qaigCHzJv+eH/j4p0cu8kEFWHUGpKg/5ff8Atn/WgCeommO8rGhcjrzgCpahtukv/XQ0AHmTf88P/HxR5k3/ADw/8fFTUUAQ+ZN/zw/8fFHmTf8APD/x8VNRQBD5k3/PD/x8UeZN/wA8P/HxU1FAEPmTf88P/HxR5k3/ADw/8fFTUUAQ+ZN/zw/8fFHmTf8APD/x8VNRQBD5k3/PD/x8UeZN/wA8P/HxU1FAEPmTf88P/HxR5k3/ADw/8fFTUUAQ+ZN/zw/8fFHmTf8APD/x8VNRQBD5k3/PD/x8UeZN/wA8P/HxU1FAEPmTf88P/HxR5k3/ADw/8fFTUUAQ+ZN/zw/8fFHmTf8APD/x8VNRQBD5k3/PD/x8UeZN/wA8P/HxU1FAEPmTf88P/HxR5k3/ADw/8fFTUUAQ+ZN/zw/8fFHmTf8APD/x8VNRQBD5k3/PD/x8UeZN/wA8P/HxU1FAEPmTf88P/HxR5k3/ADw/8fFTUUAQ+ZN/zw/8fFHmTf8APD/x8VNRQBD5k3/PD/x8UeZN/wA8P/HxU1FAEPmTf88P/HxR5k3/ADw/8fFTUUAQ+ZN/zw/8fFHmTf8APD/x8VNRQBD5sw6wHHswqRHEiBl6U6oLfrL/ANdDQBPTN7N9xQR6k4olOInI6hTSjAAA6CgBMyf3E/76P+FGZP7if99H/ClzRmgBMyf3E/76P+FG9l++oA9Qc0uaDggg9DQA6imRHMSE9Sop9AEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/wCuk+g/rUtABRRRQBGf9ev+6f5ipKjP+vX/AHT/ADFSUAQXHWL/AK6Cp6guOsX/AF0FT0AFFc34n8w3VisnlC0Jbd5u7Zvxxu2/p+NWtDnjtrG2tZLtJWmaTyNgYjavUZI7c9adtBXNqkJCqWYgADJJ7VxGhx211f2Ty+SkkTOzu82XmYn5fl7EGuqllTU9GnazbzBNE6xnGMnBHf3oasFyGDXbe5mjSOC6McjbEn8o+Wx+v4elXLG9iv7YTwhghYr8wweDiszStYsVs7OzLMtyFWFodh3Bhwc+3vVfw7qdlDZJaSXCrO0rAIc5JLcUWC5ebX7YWttOkNxILksI0RAW+U4PGadJrcEFolzcQXMCPMIsSx7SCRnOM9K5xXVNK0NnuDbqJJsyr1X5jWhem3vtO0+JbtryM3yxvI3BOQ2R+Rp2C5s3GpRW9y1v5U0sqw+dtiXcSu7bxz1qC01yO8uPJjsr0ENsZmiAVD6E54rN0dbiHxG9rcctbWhiR/76bwVP5HH4Vf0P/Xap/wBfr/yFFgNes1NbtZLe1lRZWN0xWKMKNxwcEnnoK0q4vR430yCx1aV/Mt5N0L5H+pUtwR7Zzn60kgN/+3YzPLFHZX0vlSGNnji3LuHXnNSf21a/YTdbZeJfJMW359+cbcZ696xLO6t7fUb0zao9ti9dvJA4cZHXjv0/CrhsYz4wxk+X5P2ox/w+ZnbnH6/WnZBc6CiiipGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQH/j9H/XP+tT1Af+P0f9c/60AT1DbdJP+uhqaobbpJ/10NAE1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBb9Zf+uhqeoLfrL/ANdDQBJN/qZP90/ypM0s3+pk/wB0/wAqZmgDJ8Ra42iWUJt7Y3l/dTC3s7VW2+bIcnk4+VQAWJ7AGsv+zfG/k/aP+Ek037Xjd9l/s4/Z8/3d2/fjtu/HFJ4wnOlX2h6/IrNY6fcut4V58qKVCnmkeittz6Ak1X/4RK18j+0P+Ez8RfZdvneb/ag8rZ1znbjbj9KAN3w7rp1uymM9sbS/tZmt7y1Zt3lSDB4OPmUghge4IrYzXJeDp21W91zX40ZLHULlFsy3HmxRIE80D0Zg2PUAGurzQA+H/Ux/7o/lT6ZD/qY/90fyp9AEcX3W/wB5v5mpKji+63+838zUlABRRRQBCv8Ar5PqP5CpqhX/AF8n1H8hU1ABRRRQAUUUUAFFFFAEUf8ArpPoP61LUUf+uk+g/rUtABRRRQBGf9ev+6f5ipKjP+vX/dP8xUlAEFx1i/66Cp6huAdqsBkqwOKPtUPdiD6EGgCUgMCCAQeoNNeNZEKMOCCOOCM+lM+1Q/3/ANDR9qh/v/oaAMuDw+IpLcSXbSQW7h4o/LVSCOmWHJrZAAGAAB7VF9qh/v8A6Gj7VD/f/Q09QJcDduwM4xmlqH7VD/f/AENH2qH+/wDoaQE1FQ/aof7/AOho+1Q/3/0NAE1NkjWWNo23bWGDtYqfzHNR/aof7/6Gj7VD/f8A0NAEMemW8ciurXGVORm4kI/ItzVyoftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqKh+1Q/3/ANDR9qh/v/oaAJqKh+1Q/wB/9DR9qh/v/oaAJqKh+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqgP8Ax+j/AK5/1pftUP8Af/Q02M+bcGQAhQuBnvQBYqG26Sf9dDU1VkkEDur5ALbgcUAWaKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmoqH7VD/f/AENH2qH+/wDoaAJqKh+1Q/3/ANDR9qh/v/oaAJqKh+1Q/wB/9DR9qh/v/oaAJqKh+1Q/3/0NH2qH+/8AoaAJqKh+1Q/3/wBDR9qh/v8A6GgCaioftUP9/wDQ0faof7/6GgCaioftUP8Af/Q0faof7/6GgCaioftUP9/9DR9qh/v/AKGgCaioftUP9/8AQ0faof7/AOhoAmoqH7VD/f8A0NH2qH+/+hoAmoqH7VD/AH/0NH2qH+/+hoAmoqH7VD/f/Q0faof7/wChoAmqC36y/wDXQ0v2qHsxJ9ADRbg7WYjBZicUAPm/1Mn+6f5VFmp2XcpU9CMVVJKcPwfXsaYDjhlIIBB4IPeub/4V/wCEvP8AN/sGz+9v8vafL3dc+Xnb+ldD5i/3h+dHmL/eH50CHjCgAAADgAdqXNR+Yv8AeH50oJfhOT69hQBYh/1Mf+6P5U+kVdqhR0AxS0hkcX3W/wB5v5mpKji+63+838zUlABRRRQBCv8Ar5PqP5CpqhX/AF8n1H8hU1ABRRRQAUUUUAFFFFAEUf8ArpPoP61LUUf+uk+g/rUtABRRRQBGf9ev+6f5ipKjP+vX/dP8xUlAB1pnlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lHlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lHlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lHlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lHlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lHlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lHlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lHlL6U+igBnlL6UeUvpT6KAGeUvpR5S+lPooAZ5S+lOACjilooAKayBuop1FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9KPKX0p9FADPKX0o8pfSn0UAM8pfSjyl9KfRQAzyl9Kf0oooAKKKKACiiigAooooAKKKKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/9dJ9B/Wpaij/10n0H9aloAKKKKAIz/r1/3T/MVJUZ/wBev+6f5ipKAGSMQAB1JwKTyo+6gn1IzRL1j/3v6GjNAB5Uf/PNP++RR5Uf/PNP++RXO6pd6lqWtf2JpdwbOOKJZr29CBnQMSFjjB43HaxJIIAx3NZ0VrqMcN1eaBrWoXlxZTPDLaaiyvHcMv3lBwChOeGBxnqMU7COz8qP/nmn/fIo8qP/AJ5p/wB8iqmmajDqul2t/AGEVxGsiq4wy5HQ+46Vk3Hi62g8Z2/hwwOzSxhmuA3yI5DssZHqVRj+VAzofKj/AOeaf98ijyo/+eaf98isTxL4ls9A0q8la7tBfR20k0FtNMFaUqpIAXOT07VJc+IbGx0qC6vby0tpp4PMijmmVN7bc4XJyfwoA1/Kj/55p/3yKPKj/wCeaf8AfIrN8P6m+seHdO1KVFje6tkmZV6KWUEgVNa6xpl8szWmo2lwIP8AWmKdX8v/AHsHj8aQFzyo/wDnmn/fIo8qP/nmn/fIqnbaxpl5dG1tdRtJ7hUDmKKdWcKehwDnHI596WLVdOnvpLGG/tZLuIZkt0mUyJ9VByKALflR/wBxR9BilQnLITnHQ+1JmhP9a/8Auj+tAElFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v8Aeb+ZqSo4vut/vN/M1JQAUUUUAQr/AK+T6j+QqaoV/wBfJ9R/IVNQAUUUUAFFFFABRRRQBFH/AK6T6D+tS1FH/rpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/3T/MVJQBFN/B/vf0NJmlnB2Bh/Ccmo80xHIa2tppuu3kmsR7tC1eGKOafLBYJoyQN5H3VYEfNnAK89ayNPtvDPhR7m70022oavPNI2n21nctK7Kw+VSMnA65Y8Ad69FYK6lWAZSMEEZBFV7awsrNma1s7eBm+8YolUn64FO4Ffw7p0mj+HrGwmdXmhiAlZehc8tj2yTXntzoPiK+0q/wDE0TmO6bUP7Th06SyInPknbGm7OQTGv3dvO7HevU80ZouB5Xq8b+V4vhu/DuoXl9qqebYzpYtJmMxAImcfIyEHIODnpk4qzNbvYazqL6poV5qC3ulW8Fi0VmZxGVQh4jx8hLHPOB6nivS80ZouBx0emalcfB+LS7eOSHUW0lYhE42MG2AFTnGCeRz61jLanUtRtZ9H0K806G00e4t7oS2hhMhZAEhAIBcqQTkZHvzXpWaM0XA890zQpbF/AUlpprWs0dlKl5IluVMbNbg/vOODv/vd6zfB2iTwXuj2+oLqNvqGnTSOw/s0CMkhgxNwB8ytn1JJxXqmaM0XCw/NLF/rX+g/rUeafByWbscAUgJqKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAji+63+838zUlRxfdb/AHm/makoAKKKKAIV/wBfJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/AF0n0H9alqKP/XSfQf1qWgAooooAjP8Ar1/3T/MVJUZ/16/7p/mKkoAKjMEZOduPoSKkooAj8iP0P/fRo8iP0P8A30akooAj8iP0P/fRo8iP0P8A30akooAj8iP0P/fRo8iP0P8A30akooAj8iP0P/fRo8iP0P8A30akooAj8iP0P/fRo8iP0P8A30akooAj8iP0J+pJqTGBgUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf8ArpPoP61LQAUUUUARn/Xr/un+YqSoz/r1/wB0/wAxUlACMwUZOfwGab5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAzzV9H/74P8AhR5q+j/98H/Cn0UAM81fR/8Avg/4Ueavo/8A3wf8KfRQAA5GaKKKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/9dJ9B/Wpaij/ANdJ9B/WpaACiiigCM/69f8AdP8AMVJUZ/16/wC6f5ipKACis3X9dsfDWh3esalIyWlsoZyoyTkgAAepJA/Gqnh/xMNeFwJNG1bSngCsV1G38vcrZwVIJB6cjORQBu0VXgvrS6gae3uoJoVyGkjkDKMdckccUyPVNPlgWaO/tXiZiqusylSQMkA564BoAt0VUGqaefs+L61/0n/Ufvl/e/7vPzfhVKz8UaRfa/qGiwXaG+sNnnIWA+8CcLzzgA59KANiioLW9tb1Ge0uYbhVbazRSBwD6HHep6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAji+63+838zUlRxfdb/AHm/makoAKKKKAIV/wBfJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/AF0n0H9alqKP/XSfQf1qWgAooooAjP8Ar1/3T/MVJUZ/16/7p/mKkoAwfGUVtP4TvobzRbnWbaRQstlagGR13DJXkcjqMHORxXk50vxZqfg/xbpGirr76O1vF9gj1pPLuC28GWJCcMU2Ajn6DqTXu1FAHgh8LX1z4U1ybSbPUyk0lmbvTP7I/s4TRxsS6xruwzY6464HWt3V9H0vxFZeG7fSfCF7p+ljXka8tpNNNuGTyiGdlA+70Uk9cH8fXqKAPCPF3g64/wCE21eKewu49Lure2i0uXT9GF39nVFwUQgjyCGyeMA5zxWpP4dtdO8a+NE1Dw9f3Eer2UZs73TrAM4PkMtxtfGEd2JJBPzE85zz7HRQB5z8KLS7sYNUtpNJW3s4mhS1vn037DNdqFOfMj7leBu75NejUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBGf9ev8Aun+YqSoz/r1/3T/MVJQBXvr6302yku7p9kMYBYgE9TgDA9yBUWnanFqSSGOK4heMgPHcQtGwz061HrscEujzRXNpcXUL7Q0dsMuORhgM54ODx6Vyzy6jLpt1by211f6eLmFYZb23fzAnJdmRcNIF49M59qaQjuqK8+0vSZ7s6ba31ncNZR31z8skLRqI9mUyP4VLdAT7Va0jRXsW0W5itZ47kXM8czuGJEWHCBs9FwEx2/OiwXO3orhvCunXMOqQTXXnw3qLKt0Gs3HnZPVpSxVucEYHY0msQXUvibz4tPkSaK8gKyx20jtInGWMmdqrjI2gfWiwXO6rHl8T6dBdSwzGeNYpfJedoW8pX44L4wOo61kaHAbfxNM0dnLIk3mvJcT2zxSREsDtLH5XB7Y5AqO5NwLXX9NTTLuae+upBCfIYR4ZEUOXI2gAgnr2osB2dULPVFvr+6t4beTyrZzG85K7TIMEqBnPQjnGOtchfaTdnXZEuHmVlFuLS6WzknK7QM7WVgE+YEnI5zmiXSxbR32dIDLNqzAyPbPIFi25Vti4LjJOO2TTsFzvqpT6nDbaglpIGBaB59/8IVSM57965LS/tmmxaJcXNnfPHALuIqtuxdQWBTK8kZAwO3Tmo7HS7mTTtMtrmzm3SaddQlZIz8rlgyhv7vTIzRYLndW88d1bRXELbopUDo2MZUjIPNV7bUYrnUb2yRHElps3scYO8ZGKx/Dl3Z2GnaVpy2k9vPOhDhoGQeaiKXznHX16HBrF1zT1l1jXGfS7ye6mWFbCWKJ8Bwg5DjgYOMk+hpWA76oYruCe4ngjfdLbkLKuD8pIBH6EVxWsLfIutWZs7uae7ktnjkhgZkbaqbjkcDBU/mK19Lsre08X6u5snSSYq8M3lNtZSg3/ADYwPmzkUWA6SivOordLjUrw21lcPqi6yxjuQjbI4w4LZbpjG7I9xVmx02+/t15ZWkh1FbmVhMbKRhIhDYzLu27MYwMcECnYLneVDd3K2dlPdOCUhjaRgvUgDPH5VwNpZSxCB4bG9t7mO0uBqc0wYCVthx8x4c7uRjtTdPsfPsrdtK0+5iZtJlS8keNlE7tGNoBP3ju5yOxFFguegWlwt5ZwXKAhJo1kUN1AIzzU1ecT6ddXLQfakuEi+wQLayCxlmaF1X5gArDY+4ZyRz/PofFdvfKlneWEcs1ygktmESnOJEI3HHQBgppWC50N1P8AZrWWfypZfLUt5cS7nb2A7mqdzrVpbW19KS7vZRiSaILhlBGQOeM4965BdJ1BbLVrVre5aOwspbW03ISZg7lsr6naEHFPvdKEV14hxp0xuLq1U2rpAzbj5fzgEDAOe3fNOwXO8Rg6Kw6EZpa5zSdMGl+IpY7W2khs5bGNnOCVaUMwPJ/ix1rGMN2fFkVzDp8kEq37o7LayHdEQRveQnBB7KBgUrAd5RXn8NnKPD11FDpt8mvmJhcTsjAyfOC+JOjFgDjGf8XahZW8sdkNN0y4t9NWZjdxy2UjAtsAVjHkMwGCCR39aLBc76ivPbvT3t7fTmSG71CaCHZHBcWMgRwZCQAckxuoHU9gK09KgaDxdLJFZzSrO8zyTz2zxvByMDefldTjgDkCiwXOoivIJrqe2jk3TW+3zVwfl3DI/Sp64PVdLlj1LxCbSymF3cpG9tLHG3zLj96AwGATzx1ORWr4btli1W8ews7mz0toowIp0ZN0ozkqrcjjAJ7miwXNWfW7SKON0LSh7wWZ2jG2QttOc44Bq3c3P2byf3E0vmSiP90u7Zn+JvRR3NcKNFhEU1immTKx1lTJthcA2/mHaQwGNoB7HirjaZPazrbWtpMtrFrcMsaqjFVj2DcR/s5z7CnZAdrRXIeG7c22vThLSZo5I5Ha6uLZ4pVYuDsdjw/qCPSqlpp10fFMk1yZorpb9pElFnI/mQ84Xzd20Jt4xjg4pWC53VU7nUYrbUrKydHMl3v2MMYGxcnNcfomjXFoNCuYrWaC8f7QtzI6NwNrbN4PQZC4qDTbILf6RImmXsN1FFcfb55oX+aQxnkueDk5I+op2C56HUdxL9ntpZvLkk8tC2yMZZsDOAO5rzzRrOWWHTpNFs7mC5Gnyi5uHRkV2KYjwzcN82CMdB+klvp8v2OVdP06+t2/sqaO+EsbjzpivygA/ebO45HY0WC56DG/mRI+1l3KDtYYI9j71HHdwS3c1qkmZoArSLg/KGzj+RribrQ3u49Xmmsp2nisLf7I21gRIEOdvqwIHv8AnWpp1jFb+Mby4nsnEtzFE8EwhYqG2t5nzAYU9OvtSsB1FUr7UVsQ5e3ndEgedpEXKgKM4Jz1PauP1LT9Uj1a8jtLedre1nOqQsFJEsh2ZjHqf9Zx71JHpl/9lR5LaU3Fzpt5JLhDxLKwYKfRu2PanYLnU2Grw6hP5Mccin7PFcZbH3XzgfXitCuY8ORyx6ipkhmQPpdsAXjYDKbgwyRwQSOOtZy6RLFdx38dnOLv+3XzJtbPkFmyf9w5znpzSsB3FVre/t7uxF7bv5kBBIYAjOMg9foa4m102aS8tI5LC6/tU3jm/uXRvLkgO7I3fdKldoA9vz1/Cdoln4bltfsckF4gdZw0TLubLYwSMNxjpmiwHQWF4moafb3kasqTxiRQ3UAjPNWK870vTbhRYDStPu7S9jsZlu5ZY2jDOUwgy3U78HjoP00/B9g1tdeawmhkNqEnhaykiBfIO5nZiHbryOoNNoLnY1T0vUYtW02G+hR0jlzhXxkYJHb6VyHlXR8Ww3MWnywSLqDrIyW0h3REEb2lJwQewAwKh8Oac0M+jeRpl3b38UkjXk8sLovlnd8pJ4OcrjHTFFgudtpmoR6ppsF9CrpHMu5VfqPripbm7gtFjaeTYJJFiTgnLMcAce9edDTLuWw0qO8t51tFsniw1nJN5U285OxSCDjGG5rotf037RoGkmeGS8+yzQNOTES7JwHJXk89xRYLnU0V59c2MrzXXk6fef2m9zE2nXKxOqRQfLgZ6KANwIPr+XQa9po1PXtFjmt3mtF88zAA7B8oK7iPcd+uKVgOhorgrLT7yLWpJpo5Rfx3Er5WzcidNrYXzd20IRgAY4OKpWllqey/NhaTWpm0w7kjtZIlEodcoCxJZ9pYbu9OwXO/GoRnWG03Y/mrbi43cbdpYrj68VDda3aW1lc3ILSrbTLBKqDkOSoxzj+8KwvD1rbR+JZZtP025s7M2KofOgaMGTdz97qcYz9D9azrjSEjtNetI9OmF1LeI8bRwNhoDJEflYDHqcA5GD6UWQXO/orgdS0i7tm1S10+0mTThdW0hiSNmV49p8zaoIL87cgHtUdzpippMIQXM6pPNLDA2mS+QcqBsKZLKCclW7ZNFguehUV57fadeXWpF7qGa1D29ubRktJLgwEKNyqysNpDZ6jkVv8AiZL20mttV02CWa4VJLZ0iTcSHXKk+yuFP4mlYLnR1UsdQjv2u1jR1+zXDQNuxywAOR7c1weraZc2ZFraafL59nHAILiK2kleZgcuwcHagBzkYyc1pSR3FrczSta3LLDrn2hxHCzExNFtDDA+YZ9M07Bc7WivPZrW/uLTzXtLhbKTVZ5poZbV3OxgNjNGCCyg+h/PFNudOa3gsXjgur+SGMrFbz2EqxsplJwpyTGwHdj93bRYLnolZmoa1DYXiWzQySN5TXErLjEUSkAucnJ69Bk9azPFsRuGsoWsTPC3mbpfs7z+WcDACKRyexPAxWAmh3F/bxveadK9wNEkQNLEQRMGwg5/ix+NJID0KKRJokljO5HUMp9QelPrzm507z009Fs5otOFkYyrWEsnl3GfmOwFSGPGG5GRW7o+kbvEE91exSzNBbWwgnmQrubYQzAHjdwM9SM0WC51NFcotvCvii6k1PT7q4uGnjazuEiZ0RMDABHC4OSc4zWQ2hzxeGLaZLKX7RJeE3qtEzu0Qd8ApkEr907R160WC56FVaS+gS4ktgWe4jh84xKpJK5IGO3JBGK4W509xptvaC2kuLdjcPFKdPlzDnGESPdkZOSGY8VLBp7Lcw3F3p9w11No6osnkMxE4DKQxxw23A5p2C53VvL59vFN5ckfmIG2SDDLkZwR2NSV57dWEn2S3Go6dfXGNJijsxFGx8mYL8wIH3Wzt5PYVLc6Hc3UOrTX1rPLfRWFv5Eg3EmYIdxUjgncB0/rRYLne0VVtLszyywNDOjwqhZ3j2q5YZ+U98d/SrVSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/wCvk+o/kKmoAKKKKACiiigAooooAij/ANdJ9B/Wpaij/wBdJ9B/WpaACiiigCM/69f90/zFSVGf9ev+6f5ipKACiiigAooooAKKKKACiiigAooooAKKKKAIzbwtcLcGJDMqlVcjkA9QDUlFFABRRRQBBbWdvZ+d9nj2edK00nJO5z1PNT0UUAMliSaF4pF3I6lWHqD1pLeCO1toreFdsUSBEXOcKBgDmpKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRlDqVYZBGCKWigCK2tobO1itoE2QxKERck4A6daloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAI4vut/vN/M1JUcX3W/3m/makoAKKKKAIV/18n1H8hU1Qr/AK+T6j+QqagAooooAKKKKACiiigCKP8A10n0H9alqKP/AF0n0H9aloAKKKKAIz/r1/3T/MVJUZ/16/7p/mKkoAK4fw54kvtdmsLEXeySJXmu5TGoMuGwI1GMdCuSOa7iudg8LC10vTbeG723VhK0kdyIuoZiWUrnoQcHntTVhDLbxfDd3qRQ2pMEzPHbzGZMyOoPBXOVB2nBPtVyz8RQ339lCGFyb9XcjP8Aqgg+bP8AwL5aqab4XXSLpXjktXtYnaRFayBmAOfl8wHJwT6Z7VH4a00DWNU1YQzxQTPstknUqwUnc52noC3I+lPQNTqKKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY13fT2Xieyill/wBBureRQpAwsqfNuJ91yPwrZrJ8Q6INe00Wv2hreRXDpKq7tpwQeMjqCR1poDIg8SX9toaancWjXCXDyTLvljhWKLPyqCeWOBkcZOaWbXzFq8l+jSvZjRlu1g3YBJc846A44zVrUvC32ue2e2uY4khtfsqpNAJQi/3lyRhsDGeaaPCfyLGbsNH/AGZ/Z7/u+TjkOOeOT0p6C1Ls/iC3tbt4ZkZUSxN60meig4249ai0XxImrXb2r2pt5fKE8Y81ZNyZxk7funkcH1qtF4VmllmfU9R+1CSxNltSAR7VyCGzk88Z+pq1oehyaS+ZJLOTEflq0NmInIz1ZgTnp+lLQDbooopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/6+T6j+QqagAooooAKKKKACiiigCKP/XSfQf1qWoo/9dJ9B/WpaACiiigCM/69f90/zFSVGf8AXr/un+YqSgAoqKdiFVVOCzBc+lJ9lh7qSfUk0ATUVD9lh/ufqaPssP8Ac/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP8Ac/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP8Ac/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP8Ac/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP8Ac/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP8Ac/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mkj/dzmIElSu4Z7UAT0UVXVBcO7PkqrbQuaALFFQ/ZYf7n6mj7LD/AHP1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/AHP1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/AHP1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/AHP1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYf7n6mj7LD/AHP1NAE1FQ/ZYf7n6mj7LD/c/U0ATUVD9lh/ufqaPssP9z9TQBNRUP2WH+5+po+yw/3P1NAE1FQ/ZYeykH1BNLAxKsrHJViufWgCWikZtqlj0AzTAgYZkAZj69qAJKKj8qP/AJ5p/wB8ijyo/wDnmn/fIoAkoqPyo/8Anmn/AHyKCgUZjAVh6d6AJKKRW3KGHQjNLQBHF91v95v5mpKji+63+838zUlABRRRQBCv+vk+o/kKmqFf9fJ9R/IVNQAUUUUAFFFFABRRRQBFH/rpPoP61LUUf+uk+g/rUtABRRRQBGf9ev8Aun+YqSoz/r1/3T/MVJQBBcdYv+ugqeoLjrF/10FT0AFFZuqauunSQxLGsk0uSA8ojUAdyTU2magmpWQuFXYclWXOdpHv3osBcorDttfnubi0VdPxFdswjczDO1epIx+ma1ryc21lPOACYo2cA98DNOwE1FYum2NzLDa30upXLSyASOm4eWQRnbt7dRU3h6aWfSleaRpH8xxuY5P3jRYDUorjzeTvpekNLd3aiV5RK0LHewBOPrVq+kng0e1bT7m8eSS7AU3DHceD8pzjjIHFFhXOmornoLw6xqapHcTQwy2O4rG+CjiTB/Ht9KXRrWSS7unkv71xbXLRqrTEqwA7jv1osFzoKKK5HR9Sn1R7Kya5lQRhpJZCxDTEH7oPpgjNCQzrqK5WCQXOp3Uc97qauLto0WFm2Bc8Z44qQzXwujofnTeYZt4uNx3eR1+969v0osK501FFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVAf8Aj9H/AFz/AK1PUB/4/R/1z/rQBPUNt0k/66Gpqhtukn/XQ0ATUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUFv1l/wCuhqeoLfrL/wBdDQBJN/qZP90/yozRN/qZP90/ypuaAFLBVJJAA5JPaub/AOFheEvP8r+3rP72zzNx8vdnGPMxt/WoPF8Y1S+0PQJ3ZbHUbhzdKvHnJGhfyifRiBn1AI71W/4S618j+zv+EM8RfZNvk+V/ZY8rZ0xjdjbj9KAO0DBgCCCDyCO9LmuT8HxjS77XNAgdmstOuUNqrc+THIgfygfRSTj0BA7V1WaAHQ/6mP8A3R/Kn0yH/Ux/7o/lT6AI4vut/vN/M1JUcX3W/wB5v5mpKACiiigCFf8AXyfUfyFTVCv+vk+o/kKmoAKKKKACiiigAooooAij/wBdJ9B/Wpaij/10n0H9aloAKKKKAIz/AK9f90/zFSVGf9ev+6f5ipKAILjrF/10FT1BcdYv98VPQBmappIv5YJ45ESeHIG+MOrA9iDT4bS6tI4Nk0ZWMO0sccKp5pP3QPTH61oUU7gcToge1u7byY45bh32zI0Dh4lJ5JY8cV1sNvIbH7Peyi4dlZZH27dwOew6ccVZoobuKxk2ul31q0US6mzWkRBVDENxUdFLelJYaVe2ASOPUVMAcsYzbjJBOSM5rXoouOxiDQZY7WxihvQklozsshizu3HPTPvVl9NuJ47cXN4JHhuVnDCLbkAfdxn361pUUXCxm22jx2usz6hHJgTIVMW3oSQSc/h+tSWtmdPF5IpaZppmmCKADz25OP5VeoouBTjvLh5FVtOuEBOCxePA9+GqmugiPTbS3juds9q5eOcJ6nJBGeh+tbFFFwMiPSr63muGttSWNJpmmKG3DYJ981c+w/8AE3+3+Z/yw8nZt/2s5zVuii4BRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKgP/H6P+uf9anqA/wDH7/wD+tAE9Q23ST/roamqC26Sf9dDQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQW/WX/AK6Gp6gt+sv++aAJJv8AUyf7p/lUeaklGYnA6lTUAORmmBleI9DOuWMKw3JtL+0mW5s7oLu8qVcjkfxKQSpHcE1mf2p428n7P/wjmm/a8bftX9on7Pn+9t2b8d9v4Zrqc0ZoEZHhvQ/7CsZlmuTd313M1zeXRXb5srY6DnaoACgdgBWzmm5pCcDNAE8P+pj/AN0fyp9MiGIkB6hRT6QyOL7rf7zfzNSVHF91v95v5mpKACiiigCFf9fJ9R/IVNUK/wCvk+o/kKmoAKKKKACiiigAooooAij/ANdJ9B/Wpaij/wBdJ9B/WpaACiiigCM/69f90/zFSVGf9ev+6f5ipKAGSxiRCpqHZcDgS8e4FWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoo23P/PX/wAdFWaKAK225/56/wDjoqSKIoSzElj1JqWigAqu8Thy0bFSetWKKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK225/56/8Ajoo23P8Az1/8dFWaKAK2y4PBl49gKmijEabRT6KACoWg5yjbfbGRU1FAEHkP/wA9B/3z/wDXo8h/+eg/75/+vU9FAEHkP/z0H/fP/wBelWDnLtu9sYFTUUAFFFFAEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/wBev+6f5ipKjP8Ar1/3T/MVJQAhIUEnoKbuc9EGPdsf0pJeqD/a/oadmgBN0n9xP++j/hRuk/uJ/wB9H/CqGq61Y6LbrNezFPMYJFGil5JWPRUUZLH2ArOi8Y2H2mKG9ttQ07zmCRSX1s0Ubsei7ugJ7AkGmB0G6T+4n/fR/wAKN0n9xP8Avo/4UuaM0gE3Sf3E/wC+j/hRuk/uJ/30f8KbJKkMbSSuqRoCzMxwAB3JpfMXZv3DZjO7PGPWgBd0n9xP++j/AIUbpP7if99H/CmxypNEskTq8bgMrKcgj1Bp+aAE3Sf3E/76P+FG6T+4n/fR/wAKXNGaAE3Sf3F/Bv8A61OVgwyKTNNT/Wv9Af50ASUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEcX3W/3m/makqOL7rf7zfzNSUAFFFFAEK/6+T6j+QqaoV/18n1H8hU1ABRRRQAUUUUAFFFFAEUf+uk+g/rUtRR/66T6D+tS0AFFFFAEZ/wBev+6f5ipKjP8Ar1/3T/MVJQBHL1j/AN7+hpM0T/wf739DTM0wOWkklbxjq90lp9svrCzgWyt2lCDbIWLspPAJK4J/2AKo6Df6p4gTV9O13Rf+JdJczxTSSXaOIQAP3eAMnH94fWt7WNEkvLyDU9OuxZapbqY0lKb0kjJyY5F4yuRnggg8is6XRNd1WGSy1K70+00+Yk3KadEyyXAPUFmPyg98AnHGaYjS8H3U154Q0ueeR5HaBf3jnLOBwGPuQAfxrgdT8U20XxJ/tM6kirZXsWl/Zd+N0TKwlkI9pHX/AL4r1OGKO3hjhhRY4o1CIijAUAYAA9KxU8KacvhSfw67zy2s6yeZK7AyszsWL5xjdk5HHYUIDm/Fetazq2j+LIdOjsE0zT4Jbadp95llbytz7cHC4DDGQcn0qeTW9ZvY7rSdGjsFj07TYXupLveS7SRkhECkY+UZ3HPXpV698BWd497jVdVt4r+IJeRQzKFnIXbvOVOGIHOMA9x1zNeeC7S4vDcwajqNk8lutrcC1lVRcIowu7KnkDjIwcGjQCDRtXj0H4TafqssZkW10uOTYDjcdgwM9snFR/8ACTa7pd3Fa63b6eZLyxmubY2u8BHiUM0bhic8EfMMdDxW9BoVjF4aj0B1eaxW2FqRIfmZNu3kjHOO4xWbZ+DLS3kaS41DUL6QWrWcLXUikwRMMELhQMnj5jk8CjQDP0nxZrb3mgvq0GnpZazavNELbeXiKxiT5iTggrngDg8ZPU1dA+IF9rGqacWgtTZahIyLDFFL51uMEqzuRsYHGDjGMjk10sPhqyhOhFZZz/YsRit8sPnBj8v5+OTj0xzUWkeFotEuE+xapqK2MbM0dg0imFN2eB8u7AzwN3FGgHRZoj/1r/7o/rTM06H/AFj/AEH9aQyaiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARxfdb/AHm/makqOL7rf7zfzNSUAFFFFAEK/wCvk+o/kKmqFf8AXyfUfyFTUAFFFFABRRRQAUUUUARR/wCuk+g/rUtRR/66T6D+tS0AFFFFAEZ/16/7p/mKkqM/69f90/zFSUANdA646ehqApIP4M+4IqzRQBW2yf8APNvzH+NG2T/nm35j/GrNFAFbbJ/zzb8x/jRtk/55t+Y/xqzRQBW2yf8APNvzH+NG2T/nm35j/GrNFAFbbJ/zzb8x/jRtk/55t+Y/xqzRQBW2yf8APNvzH+NG2T/nm35j/GrNFAFbZIf4CPqRU0abBycsepp9FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARxfdb/eb+ZqSo4vut/vN/M1JQAUUUUAQr/r5PqP5CpqhX/XyfUfyFTUAFFFFABRRRQAUUUUARR/66T6D+tS1FH/AK6T6D+tS0AFFFFAEcgIIdeSKTz077gf901LSbV9KAGefH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TR58fqf++TTti+lGxfSgBvnx+p/75NHnx+p/wC+TTti+lGxfSgBvnx+p/75NHnx+p/75NO2L6UbF9KAG+fH6n/vk0efH6n/AL5NO2L6UbF9KAG+fH6n/vk0efH6n/vk07YvpRsX0oAb58fqf++TR58fqf8Avk07YvpRsX0oAb58fqf++TSGcEYQEn6Yp+xfSlCgdBQAka7UA706iigAooooAhX/AF8n1H8hU1Qr/r5PqP5CpqACiiigAooooAKKKKAIo/8AXSfQf1qWoo/9dJ9B/WpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCFf9fJ9R/IVNUK/wCvk+o/kKmoAKKKKACiiigAooooAhjz50mCOg7fWpcN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigAw3qPyow3qPyoooAMN6j8qMN6j8qKKADDeo/KjDeo/KiigCJM+dJn1H8hU1FFABRRRQAUUUUAFFFFAH/2Q=='
Let’s try again with the base64 encoded image.
= client.chat.completions.create(
completion ="pixtral-12b",
model=[
messages
{"role": "user",
"content": [
{"type": "text",
"text": "What is this image about?",
},
{"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
},
], )
Let’s see the response.
print(completion.choices[0].message.content)
The image appears to be a screenshot of a configuration interface for setting up an endpoint, likely in the context of deploying or managing a containerized application. Here's a breakdown of the various sections and fields in the interface: ### General Configuration 1. **Automatic Scaling**: - **Min**: 0 (Minimum number of replicas) - **Max**: 1 (Maximum number of replicas) 2. **Revision**: - An optional field to specify a revision identifier, e.g., `b754fe8f941023b372bd6a6c17282cf4bb9c0`. ### Task and Framework - **Task**: Set to "Custom". - **Framework**: Also set to "Custom". ### Container Type - The default container type is used for deploying endpoints, which is flexible due to custom inference handlers. Options include: - Custom - Test-Generation information - Link to a custom container ### Container Details - **Container URL**: `danielvanstreien/aria-vlim.latest` - This is the registry URL for the container, which can be from various registries like Docker Hub, AWS ECR, Azure ACR, Google GCR, etc. - **Container Port**: 8000 - **Health Route**: `/health` - **Username** and **Password**: - These fields are optional for authentication to the container registry. ### Environment Variables - **Default**: - Key: `CLIENT_KEY` - Value: (To be filled in) - **Secrets**: - Key: `CLIENT_KEY` - Value: (To be filled in) ### Additional Options - **Add one**: Allows adding more environment variables or secrets. ### Summary This interface is used to configure an endpoint for a containerized application, specifying details such as the number of replicas, revision identifier, task and framework settings, container registry URL, port, health route, and environment variables. The configuration allows for flexibility in deploying the application with custom settings and secure handling of sensitive information like client keys.
Very nice! This is already pretty cool but there are still some challenges if we want to use the VLM for more than a simple chat and actually want to use the VLM to allow us to perform some other kinds of tasks or actions. For example we might want to sort screenshots into categories or tags. One way we can do this is by asking the VLM to output this kind of info as JSON. Let’s try this.
We never knew a few years ago that we would spend so much time looking at deeply nested lists of Dicts 😅 so let’s extract out the prompt to make it a bit easier to see what we’re changing.
= """What is this image about? Assign a maximum of 3 tags to the image, and put the image into one of the following categories: meme, documentation image, other.
prompt Respond in JSON format with the keys "description", "category", and "tags"."""
Show the code
= client.chat.completions.create(
completion ="pixtral-12b",
model=[
messages
{"role": "user",
"content": [
{"type": "text",
"text": prompt,
},
{"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
},
], )
Let’s see the response.
print(completion.choices[0].message.content)
```json { "description": "Configuration settings for deploying a containerized application.", "image_url": "https://example.com/container-image", "endpoint_settings": { "scale_to_zero": true, "idle_timeout": 300, "replicas": { "min": 0, "max": 1 }, "revision": "e.g. b754fe8f941023b372bd6adcba6c17282cf4bb9c0", "task": "Custom", "framework": "Custom" }, "container_type": { "default_container": true, "custom_inference_handlers": false }, "container_url": { "registry_url": "danielvanstraten/aria-vilm:latest", "container_port": 8000, "health_route": "/health" }, "authentication": { "username": "", "password": "" }, "environment_variables": { "default": [ { "key": "CLIENT_KEY", "value": "" } ], "secrets": [ { "key": "CLIENT_KEY", "value": "" } ] } } ```
This is sort of what we asked for but not really? Let’s try to parse the response as JSON.
import json
0].message.content) json.loads(completion.choices[
--------------------------------------------------------------------------- JSONDecodeError Traceback (most recent call last) Cell In[25], line 3 1 import json ----> 3 json.loads(completion.choices[0].message.content) File ~/.pyenv/versions/3.11.1/lib/python3.11/json/__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 341 s = s.decode(detect_encoding(s), 'surrogatepass') 343 if (cls is None and object_hook is None and 344 parse_int is None and parse_float is None and 345 parse_constant is None and object_pairs_hook is None and not kw): --> 346 return _default_decoder.decode(s) 347 if cls is None: 348 cls = JSONDecoder File ~/.pyenv/versions/3.11.1/lib/python3.11/json/decoder.py:337, in JSONDecoder.decode(self, s, _w) 332 def decode(self, s, _w=WHITESPACE.match): 333 """Return the Python representation of ``s`` (a ``str`` instance 334 containing a JSON document). 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() 339 if end != len(s): File ~/.pyenv/versions/3.11.1/lib/python3.11/json/decoder.py:355, in JSONDecoder.raw_decode(self, s, idx) 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: --> 355 raise JSONDecodeError("Expecting value", s, err.value) from None 356 return obj, end JSONDecodeError: Expecting value: line 1 column 1 (char 0)
In this case we can fix this by stripping the ```json
from the response but it’s not a great solution.
0].message.content.strip("```json"))
json.loads(completion.choices[## Structured output
{'description': 'Configuration settings for deploying a containerized application.',
'image_url': 'https://example.com/container-image',
'endpoint_settings': {'scale_to_zero': True,
'idle_timeout': 300,
'replicas': {'min': 0, 'max': 1},
'revision': 'e.g. b754fe8f941023b372bd6adcba6c17282cf4bb9c0',
'task': 'Custom',
'framework': 'Custom'},
'container_type': {'default_container': True,
'custom_inference_handlers': False},
'container_url': {'registry_url': 'danielvanstraten/aria-vilm:latest',
'container_port': 8000,
'health_route': '/health'},
'authentication': {'username': '', 'password': ''},
'environment_variables': {'default': [{'key': 'CLIENT_KEY', 'value': ''}],
'secrets': [{'key': 'CLIENT_KEY', 'value': ''}]}}
Structured output to the rescue!
I bang on about structured generation so much it probably seems like I’ve put my entire pension into a structured generation ETF but IMO it’s a massively useful tool for using LLMs to do productive work. In particular it makes it easier to use LLMs for tasks that require more than just a simple chat i.e where you want to use the LLM to do something like sort images into folders or categorize them or generate metadata or perform API calls…It’s also massively useful for generating synthetic data for training other models (to the point where I think I will often prefer to use a crappier model that can be used with structured generation than a better model that can’t).i
As we saw above the JSON returned wasn’t very close to what we asked for. We could try and fix this by iterating on the prompt but alongisde doing we can also enforce a certain output. This doesn’t mean the output will always be correct but at least it will have the correct format and be consistent. This is already very helpful to avoid having to write parsing prompts like
def try_and_parse_response(response):
if response.startswith("```json"):
return json.loads(response.strip("```json"))
else:
if response.startswith("```"):
return json.loads(response.strip("```"))
else:
raise ValueError("Response is not valid JSON")
This can get annoying very quickly so let’s see how we can use structured output to enforce a certain format.
Defining a Pydantic Class with Outlines
LM Studio has support for structured outputs via Outlines for mlx
models. For gguf
models it uses llama.cpp’s grammar-based sampling APIs.
Let’s see how we can use a Pydantic model to enforce a certain output. To start if we wanted to sort images into folder’s we likely don’t want the model to keeping adding new folders to the folder structure. Instead we may want to only allow a certain set of categories. We can do this by defining a Pydantic model.
from pydantic import BaseModel, Field
from typing import Literal
class ScreenshotCategory(BaseModel):
"meme", "documentation image", "other"] = Field(
category: Literal[="The category of the screenshot"
..., description )
This tells the model that the category must be one of the three options and that it must be a string. We can also add more constraints and combine classes. Let’s create an overall Class to represent the output we want for each screenshot.
We’ll ask for:
- A description of the screenshot: we will enforce a minimum and maximum length so we don’t get some really long or really short descriptions.
- A category: we will use our
ScreenshotCategory
class to enforce the category. - We’ll give the model a bit more choice with the tags by allowing up to 3 optional tags.
from typing import Annotated
from pydantic.types import StringConstraints
from typing import Optional, List
class ScreenshotInformation(BaseModel):
str, StringConstraints(min_length=50, max_length=500)] = (
description: Annotated[
Field(="A short description of the screenshot (50-200 characters)"
..., description
)
)
category: ScreenshotCategorystr]] = Field(
tags: Optional[List[None, description="A list of tags that describe the screenshot", max_items=3
)
Let’s update our prompt to ask for this information and specify that the response should be in JSON format.
= f"""Analyze the given screenshot and provide the following information in JSON format:
prompt
1. description: A short description of the screenshot (50-200 characters)
2. category: Categorize the screenshot as one of the following:
- meme
- documentation image
- other
3. tags: (Optional) Up to 3 tags that describe the screenshot
Ensure your response follows this schema:
{ScreenshotInformation.model_json_schema()}
Do not include any explanations or additional text outside of the JSON structure."""
Show the code
= client.beta.chat.completions.parse(
completion ="model-identifier",
model=[
messages
{"role": "system",
"content": """You are an AI assistant specialized in organizing a users screenshots into categories and tags.
""",
},
{"role": "user",
"content": [
{"type": "text",
"text": prompt,
},
{"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
},
],=2000,
max_tokens=0.7,
temperature=ScreenshotInformation,
response_format )
print(completion.choices[0].message.parsed)
ScreenshotInformation( description='Configuration settings for deploying a container endpoint.', category=ScreenshotCategory(category='documentation image'), tags=['Technology', ',', 'Configuration settings'] )
We can see that we now get back a ScreenshotInformation
object rather than a string. This is already pretty cool. You might spot though that one of the tags is just a ,
, whilst this is “technically” correct it’s not what we want. We can fix this by updating our Pydantic model. We can also add a constraint to the tags to ensure they are at least 3 characters long.
from typing import Annotated, List, Optional
from pydantic import BaseModel, Field
from pydantic.types import StringConstraints
class ScreenshotCategory(BaseModel):
"meme", "documentation image", "other"] = Field(
category: Literal[="The category of the screenshot"
..., description
)
class ScreenshotInformation(BaseModel):
str, StringConstraints(min_length=50, max_length=1000)] = (
description: Annotated[
Field(="A short description of the screenshot (50-200 characters)"
..., description
)
)
category: ScreenshotCategorystr, StringConstraints(min_length=3)]]] = Field(
tags: Optional[List[Annotated[None, description="A list of tags that describe the screenshot", max_items=3
)
= f"""Analyze the given screenshot and provide the following information in JSON format:
prompt
1. description: A short description of the screenshot (50-200 characters)
2. category: Categorize the screenshot as one of the following:
- meme
- documentation image
- other
3. tags: (Optional) Up to 3 tags that describe the screenshot
Ensure your response follows this schema:
{ScreenshotInformation.model_json_schema()}
Do not include any explanations or additional text outside of the JSON structure."""
Show the code
= client.beta.chat.completions.parse(
completion ="model-identifier",
model=[
messages
{"role": "system",
"content": """You are an AI assistant specialized in organizing a users screenshots into categories and tags.
""",
},
{"role": "user",
"content": [
{"type": "text",
"text": prompt,
},
{"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
},
],=2000,
max_tokens=0.7,
temperature=ScreenshotInformation,
response_format )
Let’s see how this changes the output.
print(completion.choices[0].message.parsed)
ScreenshotInformation( description='Configuration page for deploying a container with various settings including security, networking, and environment variables.', category=ScreenshotCategory(category='documentation image'), tags=['.NET', 'API', 'AWS ECR'] )
The tags could potentially be improved but we already have an output that means we can use this in a program. To make this a bit easier to use let’s wrap this up in a function.
from typing import Union
def encode_image_to_base64(image):
= io.BytesIO()
img_byte_arr format="JPEG")
image.save(img_byte_arr, = img_byte_arr.getvalue()
image_bytes return base64.b64encode(image_bytes).decode("utf-8")
def analyze_screenshot(image: Image.Image, prompt, return_class):
= image.convert("RGB")
image = encode_image_to_base64(image)
base64_image = client.beta.chat.completions.parse(
completion ="model-identifier",
model=[
messages
{"role": "system",
"content": """You are an AI assistant specialized in organizing a users screenshots into categories and tags.
""",
},
{"role": "user",
"content": [
{"type": "text",
"text": prompt,
},
{"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
},
],=2000,
max_tokens=0.7,
temperature=return_class,
response_format
)return completion.choices[0].message.parsed
Let’s now try with another screenshot.
= Image.open(screenshots[0])
image image
0], prompt, ScreenshotInformation) analyze_screenshot(screenshots[
ScreenshotInformation(description='This screenshot shows a list of instructions for analyzing document images.', category=ScreenshotCategory(category='documentation image'), tags=None)
To make sure memes are detected let’s try with a meme.
= "https://preview.redd.it/this-meme-only-runs-on-an-h100-v0-urpjifh14xcd1.jpeg?auto=webp&s=7be0109b54cef2cd268659cb29727f6e16462621"
url = Image.open(requests.get(url, stream=True).raw)
image image
= analyze_screenshot(image, prompt, ScreenshotInformation)
screenshot_info screenshot_info
ScreenshotInformation(description='The couple is discussing Llama3 400b while in bed.', category=ScreenshotCategory(category='meme'), tags=['relationship', 'humor', 'tech'])
Organizing the screenshots aka we don’t need claude to interact with our machines!
We can now use this to organize our screenshots. We’ll create a new folder on our desktop and move the screenshots into the appropriate folders.
= ["meme", "other", "documentation_image"]
folders = "/Users/davanstrien/Desktop/organized_screenshots"
base_desktop_folder for folder in folders:
f"{base_desktop_folder}/{folder}").mkdir(exist_ok=True, parents=True) Path(
screenshot_info.category.category
'meme'
We define a mapping from the category to the folder on our desktop.
import shutil
= {
category_folder_map "meme": Path(base_desktop_folder) / "meme",
"other": Path(base_desktop_folder) / "other",
"documentation image": Path(base_desktop_folder) / "documentation_image",
}
category_folder_map
{'meme': PosixPath('/Users/davanstrien/Desktop/organized_screenshots/meme'),
'other': PosixPath('/Users/davanstrien/Desktop/organized_screenshots/other'),
'documentation image': PosixPath('/Users/davanstrien/Desktop/organized_screenshots/documentation_image')}
and a function to move the screenshot to the appropriate folder. Let’s try with the first screenshot.
def organize_screenshot(image_path):
= Image.open(image_path).convert("RGB")
image = analyze_screenshot(image, prompt, ScreenshotInformation)
analysis = analysis.category.category
category print(f"Moving {image_path} to {category_folder_map[category]}")
/ image_path.name)
shutil.move(image_path, category_folder_map[category]
0]) organize_screenshot(screenshots[
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-22 at 18.51.23.png to /Users/davanstrien/Desktop/organized_screenshots/documentation_image
To prove this works here it is in the correct folder.
We can now try with a bunch of screenshots.
= list(Path("/Users/davanstrien/Desktop").glob("Screenshot*.png")) screenshots
%%time
from tqdm.auto import tqdm
= screenshots[:10]
ten_examples
for screenshot in tqdm(ten_examples):
organize_screenshot(screenshot)
0%| | 0/10 [00:00<?, ?it/s]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-11 at 15.17.06.png to /Users/davanstrien/Desktop/organized_screenshots/other
10%|█ | 1/10 [01:03<09:32, 63.66s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-17 at 16.37.22.png to /Users/davanstrien/Desktop/organized_screenshots/other
20%|██ | 2/10 [02:00<07:56, 59.60s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-03 at 09.14.30.png to /Users/davanstrien/Desktop/organized_screenshots/documentation_image
30%|███ | 3/10 [02:58<06:51, 58.74s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-03 at 09.14.26.png to /Users/davanstrien/Desktop/organized_screenshots/meme
40%|████ | 4/10 [04:26<07:03, 70.56s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-11 at 10.49.02.png to /Users/davanstrien/Desktop/organized_screenshots/meme
50%|█████ | 5/10 [05:13<05:09, 61.97s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-17 at 16.37.08.png to /Users/davanstrien/Desktop/organized_screenshots/other
60%|██████ | 6/10 [06:37<04:37, 69.48s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-23 at 21.48.10.png to /Users/davanstrien/Desktop/organized_screenshots/documentation_image
70%|███████ | 7/10 [08:52<04:33, 91.03s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-22 at 17.26.00.png to /Users/davanstrien/Desktop/organized_screenshots/meme
80%|████████ | 8/10 [09:35<02:31, 75.68s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-02 at 10.31.04.png to /Users/davanstrien/Desktop/organized_screenshots/other
90%|█████████ | 9/10 [10:39<01:12, 72.05s/it]
Moving /Users/davanstrien/Desktop/Screenshot 2024-10-02 at 16.57.27.png to /Users/davanstrien/Desktop/organized_screenshots/documentation_image
100%|██████████| 10/10 [12:20<00:00, 74.08s/it]
CPU times: user 1.29 s, sys: 500 ms, total: 1.79 s
Wall time: 12min 20s
Conclusion
Without too much effort we’ve been able to use a VLM to sort out our screenshots into different folders. This probably seems like a bit of a trivial tasks but hopefully it gives you an idea of how you can use VLM’s to do all sorts of other tasks (or use an LLM to do tasks that require a bit more than just a simple chat).
In my opinion a very important component of this working well is the use of structured outputs. It allows us to enforce a certain format and makes it easier to use the output in a program.
One of the limitations with this current setup is that inference is pretty slow. To be honest, I’m quite excited at how well a local VLM can perform and for a lot of tasks it doesn’t really matter that much if it’s slow if it’s local and you don’t need to pay for cloud resources (you can just run it in the background/while you do other things).
The recent release of Aria has me very excited about open VLMs. At the moment it’s quite a beefy model and is unlikely to run on my mac machine but there has been a lot of progress in quantizing models and other tricks to make running these models much more accessible. For text models we now have a lot of smallish models (~8B parameters) that are pretty capable for many tasks and run very quickly even locally. It’s quite likely that we’ll soon see a lot more open VLMs that are actually accessible to run on consumer hardware.